Detailed summary of the working group on environmental control (T6)

For the next generation of large accelerators, the civil engineering of accelerator tunnels and associated underground enclosures will be a major component of the technical challenge of building such machines. Because of the large scale involved, the engineering will be required to be as cost-effective as possible, and issues such as ground motion and artificial sources of vibration in the environment will need to be carefully considered. installation and alignment of the machine components will be tasks of unprecedented scope, and will require unprecedented precision. Examine in detail the most important and most difficult aspects of these challenges, both from the point of view of performance and cost-effectiveness. In particular, identify what the site requirements are for the different machines under discussion (JLC, NLC, TESLA, VLHC, Muon source), and describe how tunneling methods are affected by them. Identify, for the different types of accelerators, the different length scales that are involved in defining the alignment tolerances, and what are the tolerances over that length scale. Specify the R and D efforts needed to define the scope of the most critical challenges, and prioritize the efforts, in terms of the potential to provide maximal performance and/or cost-effectiveness. Establish a technology-limited time line, and the resource requirements, for the most important of these efforts.