Integrality of minimal unit circular-arc models

A proper circular-arc (PCA) model is a pair ${\cal M} = (C, {\cal A})$ where $C$ is a circle and $\cal A$ is a family of inclusion-free arcs on $C$ in which no two arcs of $\cal A$ cover $C$. A PCA model $\cal U$ is a $(c, \ell, d, d_s)$-CA model when $C$ has circumference $c$, all the arcs in $\cal A$ have length $\ell$, all the extremes of the arcs in $\cal A$ are at a distance at least $d$, and all the beginning points of the arcs in $\cal A$ are at a distance at least $d + d_s$. If $c \leq c'$ and $\ell \leq \ell'$ for every $(c', \ell', d, d_s)$-CA model, then $\cal U$ is $(d, d_s)$-minimal. In this article we prove that $c$ and $\ell$ are integer combinations of $d$ and $d_s$ when $\cal U$ is $(d, d_s)$-minimal. As a consequence, we obtain an algorithm to compute a $(d, d_s)$-minimal model equivalent to an input PCA model $\cal M$ that runs in $O(n^3)$ time and $O(n^2)$ space.

[1]  Frank Foulks,et al.  On the Concept of the Scale , 1999, J. Philos. Log..

[2]  Nelson Goodman Topology of Quality , 1977 .

[3]  Jayme Luiz Szwarcfiter,et al.  Unit Circular-Arc Graph Representations and Feasible Circulations , 2008, SIAM J. Discret. Math..

[4]  Jorge Urrutia,et al.  Discrete Realizations of Contact and Intersection Graphs , 1997, Graph Drawing.

[5]  Stephan Olariu,et al.  Simple Linear Time Recognition of Unit Interval Graphs , 1995, Inf. Process. Lett..

[6]  Ronald Harrop,et al.  Uniformization of Linear Arrays , 1957, J. Symb. Log..

[7]  M. Pirlot Minimal representation of a semiorder , 1990 .

[8]  Jayme Luiz Szwarcfiter,et al.  On unit interval graphs with integer endpoints , 2015, Electron. Notes Discret. Math..

[9]  Simone Dantas,et al.  Gene clusters as intersections of powers of paths , 2012, Journal of the Brazilian Computer Society.

[10]  Jutta Mitas Minimal Representation of Semiorders with Intervals of Same Length , 1994, ORDAL.

[11]  Pierre Fraigniaud,et al.  Interval Routing Schemes , 1998, Algorithmica.

[12]  Jayme Luiz Szwarcfiter,et al.  Short Models for Unit Interval Graphs , 2009, Electron. Notes Discret. Math..

[13]  Guy Even,et al.  Scheduling of a Smart Antenna: Capacitated Coloring of Unit Circular-Arc Graphs , 2006, CAAN.

[14]  Yota Otachi,et al.  Extending Partial Representations of Proper and Unit Interval Graphs , 2012, Algorithmica.

[15]  E. Galanter,et al.  An axiomatic and experimental study of sensory order and measure. , 1956, Psychological review.

[16]  Jeremy P. Spinrad,et al.  Polynomial time recognition of unit circular-arc graphs , 2006, J. Algorithms.

[17]  Patrick Suppes,et al.  Foundational aspects of theories of measurement , 1958, Journal of Symbolic Logic.

[18]  Alan Tucker,et al.  Structure theorems for some circular-arc graphs , 1974, Discret. Math..

[19]  Haim Kaplan,et al.  Certifying algorithms for recognizing proper circular-arc graphs and unit circular-arc graphs , 2009, Discret. Appl. Math..

[20]  R. Luce Semiorders and a Theory of Utility Discrimination , 1956 .

[21]  Oleg Verbitsky,et al.  Solving the canonical representation and Star System Problems for proper circular-arc graphs in logspace , 2016, J. Discrete Algorithms.