Towards an Efficient, Scalable Stream Query Operator Framework for Representing and Analyzing Continuous Fields

[1]  Jennifer Widom,et al.  STREAM: The Stanford Stream Data Manager , 2003, IEEE Data Eng. Bull..

[2]  Barry Smith,et al.  SNAP and SPAN: Towards Dynamic Spatial Ontology , 2004, Spatial Cogn. Comput..

[3]  Mirco Musolesi,et al.  The Rise of People-Centric Sensing , 2008, IEEE Internet Comput..

[4]  Walid G. Aref,et al.  Continuous Query Processing of Spatio-Temporal Data Streams in PLACE , 2005, GeoInformatica.

[5]  Yan Huang,et al.  Querying streaming point clusters as regions , 2010, IWGS '10.

[6]  Max J. Egenhofer,et al.  Fields as a Generic Data Type for Big Spatial Data , 2014, GIScience.

[7]  Michael F. Goodchild,et al.  Extending geographical representation to include fields of spatial objects , 2002, Int. J. Geogr. Inf. Sci..

[8]  Petko Bakalov,et al.  On-line discovery of flock patterns in spatio-temporal data , 2009, GIS.

[9]  Ramani Duraiswami,et al.  Efficient kriging for real-time spatio-temporal interpolation , 2010 .

[10]  Lukasz Golab,et al.  Issues in data stream management , 2003, SGMD.

[11]  Arie Segev,et al.  A glossary of temporal database concepts , 1992, SGMD.

[12]  Silvia Nittel,et al.  Real-time sensor data streams , 2015, SIGSPACIAL.

[13]  Nancy A. Lynch,et al.  Clock Synchronization for Wireless Networks , 2004, OPODIS.

[14]  Michael H. F. Wilkinson,et al.  A Comparison of Algorithms for Connected Set Openings and Closings , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Ralf Hartmut Güting,et al.  Spatio-Temporal Data Types: An Approach to Modeling and Querying Moving Objects in Databases , 1999, GeoInformatica.

[16]  H. Yamazawa,et al.  SPEEDI and WSPEEDI: Japanese Emergency Response Systems to Predict Radiological Impacts in Local and Workplace Areas due to a Nuclear Accident , 1993 .

[17]  Silvia Nittel,et al.  Towards window stream queries over continuous phenomena , 2013, IWGS '13.

[18]  Qiang Chen,et al.  Aurora : a new model and architecture for data stream management ) , 2006 .

[19]  Xiaoling Li,et al.  Parallelizing skyline queries over uncertain data streams with sliding window partitioning and grid index , 2014, Knowledge and Information Systems.

[20]  Karen K. Kemp Fields as a framework for integrating GIS and environmental process models. Part 1: Representing spatial continuity , 1996, Trans. GIS.

[21]  James J. Little,et al.  Triangulated Irregular Network , 2017, Encyclopedia of GIS.

[22]  Kresimir Krizanovic,et al.  Data Types and Operations for Spatio-temporal Data Streams , 2011, 2011 IEEE 12th International Conference on Mobile Data Management.

[23]  Walid G. Aref,et al.  Spatio-Temporal Access Methods: Part 2 (2003 - 2010) , 2010, IEEE Data Eng. Bull..

[24]  N. Chrisman Exploring Geographic Information Systems , 1997 .

[25]  Elke A. Rundensteiner,et al.  SCUBA: Scalable Cluster-Based Algorithm for Evaluating Continuous Spatio-temporal Queries on Moving Objects , 2006, EDBT.

[26]  Ralf Hartmut Güting,et al.  A data model and data structures for moving objects databases , 2000, SIGMOD '00.

[27]  Ying Li,et al.  Microsoft CEP Server and Online Behavioral Targeting , 2009, Proc. VLDB Endow..

[28]  Edzer Pebesma,et al.  Spatial interpolation in massively parallel computing environments , 2011 .

[29]  Kyriakos Mouratidis,et al.  Conceptual partitioning: an efficient method for continuous nearest neighbor monitoring , 2005, SIGMOD '05.

[30]  Kyriakos Mouratidis,et al.  Continuous monitoring of top-k queries over sliding windows , 2006, SIGMOD Conference.

[31]  Donna Peuquet,et al.  An Event-Based Spatiotemporal Data Model (ESTDM) for Temporal Analysis of Geographical Data , 1995, Int. J. Geogr. Inf. Sci..

[32]  Douglas B. Terry,et al.  Continuous queries over append-only databases , 1992, SIGMOD '92.

[33]  Rupert G. Miller The jackknife-a review , 1974 .

[34]  Andreas Krause,et al.  The next big one: Detecting earthquakes and other rare events from community-based sensors , 2011, Proceedings of the 10th ACM/IEEE International Conference on Information Processing in Sensor Networks.

[35]  Marios Hadjieleftheriou,et al.  R-Trees - A Dynamic Index Structure for Spatial Searching , 2008, ACM SIGSPATIAL International Workshop on Advances in Geographic Information Systems.

[36]  W. Tobler A Computer Movie Simulating Urban Growth in the Detroit Region , 1970 .

[37]  Jianping Fan,et al.  Seeded region growing: an extensive and comparative study , 2005, Pattern Recognit. Lett..

[38]  Shashi Shekhar,et al.  Identifying patterns in spatial information: A survey of methods , 2011, WIREs Data Mining Knowl. Discov..

[39]  Zdravko Galić,et al.  Spatio-Temporal Data Stream Clustering , 2016 .

[40]  Frank Y. Shih,et al.  Automatic seeded region growing for color image segmentation , 2005, Image Vis. Comput..

[41]  Rolf Adams,et al.  Seeded Region Growing , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[42]  A R Al-Ali,et al.  A Mobile GPRS-Sensors Array for Air Pollution Monitoring , 2010, IEEE Sensors Journal.

[43]  Walid G. Aref,et al.  PLACE: A Query Processor for Handling Real-time Spatio-temporal Data Streams , 2004, VLDB.

[44]  Silvia Nittel,et al.  Real‐time inverse distance weighting interpolation for streaming sensor data , 2018, Trans. GIS.

[45]  Alexander Gluhak,et al.  SmartSantander: The meeting point between Future Internet research and experimentation and the smart cities , 2011, 2011 Future Network & Mobile Summit.

[46]  Thomas Brinkhoff,et al.  Towards Real-Time Processing of Massive Spatio-temporally Distributed Sensor Data: A Sequential Strategy Based on Kriging , 2015, AGILE Conf..

[47]  G. Langran Time in Geographic Information Systems , 1990 .

[48]  J. Jouzel,et al.  Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica , 1999, Nature.

[49]  Robert J. Renka,et al.  Multivariate interpolation of large sets of scattered data , 1988, TOMS.

[50]  Edzer J. Pebesma,et al.  TGRASS: A temporal GIS for field based environmental modeling , 2014, Environ. Model. Softw..

[51]  Marc P. Armstrong,et al.  Temporality in Spatial Databases , 1988 .

[52]  Jian Wang,et al.  Explorations of the implementation of a parallel IDW interpolation algorithm in a Linux cluster-based parallel GIS , 2011, Comput. Geosci..

[53]  Michael J. Franklin,et al.  Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing , 2012, NSDI.

[54]  Gb Stewart,et al.  The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks , 2013 .

[55]  Ling Liu,et al.  MobiEyes: Distributed Processing of Continuously Moving Queries on Moving Objects in a Mobile System , 2004, EDBT.

[56]  Philip S. Yu,et al.  SPADE: the system s declarative stream processing engine , 2008, SIGMOD Conference.

[57]  Bo Xu,et al.  Moving objects databases: issues and solutions , 1998, Proceedings. Tenth International Conference on Scientific and Statistical Database Management (Cat. No.98TB100243).

[58]  Xiaojun Yang,et al.  Spatial Interpolation , 2017, Encyclopedia of GIS.

[59]  Mark H. Hansen,et al.  Participatory Sensing: A Citizen-Powered Approach to Illuminating the Patterns that Shape our World , 2009 .

[60]  E. F. CODD,et al.  A relational model of data for large shared data banks , 1970, CACM.

[61]  A. B. Gavali,et al.  Review on indexing methods in location based services , 2014, 2014 IEEE International Advance Computing Conference (IACC).

[62]  Antony Galton,et al.  A Formal Theory of Objects and Fields , 2001, COSIT.

[63]  Kenneth W. Hudnut,et al.  THE SOUTHERN CALIFORNIA INTEGRATED GPS NETWORK (SCIGN) , 2001 .

[64]  Silvia Nittel,et al.  Real-time spatial interpolation of continuous phenomena using mobile sensor data streams , 2012, SIGSPATIAL/GIS.

[65]  Walid G. Aref,et al.  Phenomenon-aware data stream management systems , 2007 .

[66]  Dennis McLeod,et al.  Geostreaming in cloud , 2011, IWGS '11.

[67]  Nikos Pelekis,et al.  Literature review of spatio-temporal database models , 2004, The Knowledge Engineering Review.

[68]  M. Tomczak,et al.  Spatial Interpolation and its Uncertainty Using Automated Anisotropic Inverse Distance Weighting (IDW) - Cross-Validation/Jackknife Approach , 1998 .

[69]  Frederick Reiss,et al.  TelegraphCQ: Continuous Dataflow Processing for an Uncertain World , 2003, CIDR.

[70]  Richard T. Snodgrass,et al.  A taxonomy of time databases , 1985, SIGMOD Conference.

[71]  Phaedon C. Kyriakidis,et al.  Geostatistical Space–Time Models: A Review , 1999 .

[72]  Walid G. Aref,et al.  PLACE: A Scalable Location-aware Database Server for Spatio-temporal Data Streams , 2005, IEEE Data Eng. Bull..

[73]  Saurya Das,et al.  The Generalized Uncertainty Principle and Quantum Gravity Phenomenology , 2010, 1001.2642.

[74]  S. Muthukrishnan,et al.  Data streams: algorithms and applications , 2005, SODA '03.

[75]  Antony Galton,et al.  Fields and Objects in Space, Time, and Space-time , 2004, Spatial Cogn. Comput..

[76]  Torsten Hahmann,et al.  From Data Streams to Fields: Extending Stream Data Models with Field Data Types , 2016, GIScience.

[77]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[78]  Walid G. Aref,et al.  Spatio-Temporal Access Methods , 2003, IEEE Data Eng. Bull..

[79]  Adrian Bowyer,et al.  Computing Dirichlet Tessellations , 1981, Comput. J..

[80]  Allison Kealy,et al.  Stream Kriging: Incremental and recursive ordinary Kriging over spatiotemporal data streams , 2016, Comput. Geosci..

[81]  Kresimir Krizanovic,et al.  Geospatial data streams: Formal framework and implementation , 2014, Data Knowl. Eng..

[82]  Ugur Demiryurek,et al.  Geospatial stream query processing using Microsoft SQL Server StreamInsight , 2010, Proc. VLDB Endow..

[83]  Jennifer Widom,et al.  Models and issues in data stream systems , 2002, PODS.

[84]  Lidia Morawska,et al.  Mobile phones as monitors of personal exposure to air pollution: Is this the future? , 2018, PloS one.

[85]  U. Netlogo Wilensky,et al.  Center for Connected Learning and Computer-Based Modeling , 1999 .

[86]  Deborah Estrin,et al.  PEIR, the personal environmental impact report, as a platform for participatory sensing systems research , 2009, MobiSys '09.

[87]  Hicham G. Elmongui,et al.  Challenges in spatiotemporal stream query optimization , 2006, MobiDE '06.

[88]  Walid G. Aref,et al.  NILE-PDT: A Phenomenon Detection and Tracking Framework for Data Stream Management Systems , 2005, VLDB.

[89]  D. Shepard A two-dimensional interpolation function for irregularly-spaced data , 1968, ACM National Conference.

[90]  Walid G. Aref,et al.  Stream window join: tracking moving objects in sensor-network databases , 2003, 15th International Conference on Scientific and Statistical Database Management, 2003..

[91]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[92]  Maribel Yasmina Santos,et al.  Concave hull: A k-nearest neighbours approach for the computation of the region occupied by a set of points , 2007, GRAPP.

[93]  Indranil Gupta,et al.  Stateful Scalable Stream Processing at LinkedIn , 2017, Proc. VLDB Endow..

[94]  Walid G. Aref,et al.  Incremental Evaluation of Sliding-Window Queries over Data Streams , 2007 .

[95]  Qinghan Liang Towards The Continuous Spatio-Temporal Field Model for Sensor Data Streams , 2015 .

[96]  Ali Abedi,et al.  Distributed homology algorithm to detect topological events via wireless sensor networks , 2011, IET Wirel. Sens. Syst..

[97]  Thomas Brinkhoff,et al.  Environmental Monitoring of Continuous Phenomena by Sensor Data Streams: A System Approach Based on Kriging , 2015, EnviroInfo/ICT4S.

[98]  Luca Schenato,et al.  A distributed consensus protocol for clock synchronization in wireless sensor network , 2007, 2007 46th IEEE Conference on Decision and Control.

[99]  Michael Stonebraker,et al.  "One size fits all": an idea whose time has come and gone , 2018, Making Databases Work.

[100]  Jennifer Widom,et al.  The CQL continuous query language: semantic foundations and query execution , 2006, The VLDB Journal.

[101]  Walid G. Aref,et al.  SOLE: scalable on-line execution of continuous queries on spatio-temporal data streams , 2008, The VLDB Journal.

[102]  Kresimir Krizanovic,et al.  OCEANUS: a spatio-temporal data stream system prototype , 2012, IWGS '12.

[103]  Lixin Li,et al.  A Comparison of Spatio-temporal Interpolation Methods , 2002, GIScience.

[104]  D. Krige A statistical approach to some basic mine valuation problems on the Witwatersrand, by D.G. Krige, published in the Journal, December 1951 : introduction by the author , 1951 .

[105]  Yan Huang,et al.  New Data Types and Operations to Support Geo-streams , 2008, GIScience.

[106]  Edzer J. Pebesma,et al.  Multivariable geostatistics in S: the gstat package , 2004, Comput. Geosci..

[107]  Michael J. Franklin,et al.  Streaming Queries over Streaming Data , 2002, VLDB.

[108]  Michael Stonebraker,et al.  The 8 requirements of real-time stream processing , 2005, SGMD.

[109]  R.N. Murty,et al.  CitySense: An Urban-Scale Wireless Sensor Network and Testbed , 2008, 2008 IEEE Conference on Technologies for Homeland Security.

[110]  Monika Sester,et al.  Estimation of precipitation fields from 1-minute rain gauge time series – comparison of spatial and spatio-temporal interpolation methods , 2015, Int. J. Geogr. Inf. Sci..

[111]  T. Fearn The Jackknife , 2000 .

[112]  Qingkai Kong,et al.  Smartphone-based networks for earthquake detection , 2015, 2015 15th International Conference on Innovations for Community Services (I4CS).

[113]  Libor Preucil,et al.  Plume Tracking by a Self-stabilized Group of Micro Aerial Vehicles , 2014, MESAS.

[114]  Dieter Gawlick,et al.  Information sharing with the Oracle database , 2003, DEBS '03.

[115]  Nisheeth Shrivastava,et al.  Cluster Hull: A Technique for Summarizing Spatial Data Streams , 2006, 22nd International Conference on Data Engineering (ICDE'06).

[116]  Markus Schneider,et al.  A foundation for representing and querying moving objects , 2000, TODS.

[117]  David J. DeWitt,et al.  NiagaraCQ: a scalable continuous query system for Internet databases , 2000, SIGMOD '00.

[118]  Walid G. Aref,et al.  Exploiting predicate-window semantics over data streams , 2006, SGMD.

[119]  H. Buchner The Grid File : An Adaptable , Symmetric Multikey File Structure , 2001 .

[120]  Michael F. Worboys,et al.  GIS : a computing perspective , 2004 .

[121]  Michael F. Worboys,et al.  A Unified Model for Spatial and Temporal Information , 1994, Comput. J..

[123]  Walid G. Aref,et al.  SINA: scalable incremental processing of continuous queries in spatio-temporal databases , 2004, SIGMOD '04.

[124]  F. P. Preparata,et al.  Convex hulls of finite sets of points in two and three dimensions , 1977, CACM.

[125]  Jeremy Mennis,et al.  Cubic Map Algebra Functions for Spatio-Temporal Analysis , 2005 .

[126]  Lixin Li,et al.  Interpolation methods for spatio-temporal geographic data , 2004, Comput. Environ. Urban Syst..

[127]  R. Sinnott Virtues of the Haversine , 1984 .

[128]  Michael Stonebraker,et al.  Load Shedding in a Data Stream Manager , 2003, VLDB.

[129]  Elke A. Rundensteiner,et al.  CAPE: A Constraint-Aware Adaptive Stream Processing Engine , 2005, Stream Data Management.

[130]  Walid G. Aref,et al.  Nile: a query processing engine for data streams , 2004, Proceedings. 20th International Conference on Data Engineering.

[131]  Christophe Claramunt,et al.  Managing Time in GIS: An Event-Oriented Approach , 1995, Temporal Databases.

[132]  P. Jaccard,et al.  Etude comparative de la distribution florale dans une portion des Alpes et des Jura , 1901 .

[133]  Jonathan Raper,et al.  Development of a Geomorphological Spatial Model Using Object-Oriented Design , 1995, Int. J. Geogr. Inf. Sci..

[134]  Michael Stonebraker,et al.  Monitoring Streams - A New Class of Data Management Applications , 2002, VLDB.

[135]  Jin Li,et al.  Spatial interpolation methods applied in the environmental sciences: A review , 2014, Environ. Model. Softw..

[136]  Victor O. K. Li,et al.  Sensor deployment for air pollution monitoring using public transportation system , 2012, 2012 IEEE Congress on Evolutionary Computation.

[137]  S. Riser,et al.  The ARGO Project: Global Ocean Observations for Understanding and Prediction of Climate Variability. Report for Calendar Year 2004 , 2000 .

[138]  David Maier,et al.  No pane, no gain: efficient evaluation of sliding-window aggregates over data streams , 2005, SGMD.