Studying fluorous interactions in a series of coordination compounds derived from mono-pyridyl ligands equipped with hydrogen bonding functionality: exploiting anion⋯πF interaction in separating ClO4− anion from a competing mixture of anions

A series of coordination compounds (both coordination complexes (CCs) and coordination polymers (CPs)) viz. [Cu(L1)4·(SO4)·(DMSO)]CC1, [(H2O)2(DMSO)Cd(L1)2(μ2SO4)(Cd(L1)2·(SO4)·(DMSO)·(H2O)] CC2, [Cu(L2)2(H2O)·(Cl)2] CC3, [Cu(L2)2(μ-SO4)(H2O)]∝ CP1, [{Cu(L2)4(μ-SiF6)}·3H2O]∝ CP2, [{Cu(L3)4(ClO4)}·ClO4·H2O]·CC4, [{Cu(L3)4(H2O)}·H2O·2BF4] CC5, [{(Cl)Cu(L3)4(μ-Cl)Cu(L3)4}·Cl·H2O] CC6, [{Cu2(L3)4(μ-Cl)2·(Cl)2}·H2O] CC7, [Cu(L3)2(Cl)2] CC8, and [{Cu(L4)4·(H2O)2}·SO4·5H2O] CC9 derived from ligands equipped with pyridyl and pentafluorophenyl/phenyl moieties along with hydrogen bonding backbone (amide/urea) with CuII/CdII metal centers have been synthesized and characterized by single crystal X-ray diffraction (SXRD). Their various fluorous interactions along with hydrogen bonding have been investigated. The results show that almost all the coordination compounds except CC9 studied herein display various fluorous interactions; in one such example i.e. in CC4, anion–πF along with other supramolecular interactions (F⋯F, C–H⋯F) shapes the supramolecular assembly, which is exploited to separate environmentally relevant perchlorate anion from a competing mixture of anions viz. SO42−, NO3−, ClO4−, BF4−, Cl− by following in situ synthesis of the corresponding coordination compound.

[1]  B. Moyer,et al.  A case for molecular recognition in nuclear separations: sulfate separation from nuclear wastes. , 2013, Inorganic chemistry.

[2]  P. Ghosh,et al.  Selective recognition of sulphate in a Cu(II) assisted 1D polymer of a simple pentafluorophenyl substituted pyridyl-urea via second sphere coordination. , 2013, Dalton transactions.

[3]  P. Dastidar,et al.  Coordination polymers: what has been achieved in going from innocent 4,4'-bipyridine to bis-pyridyl ligands having a non-innocent backbone? , 2012, Chemical Society reviews.

[4]  S. Kitagawa,et al.  Framework dimensionality of copper(I) coordination polymers of 4,4′-bipyrimidine controlled by anions and solvents , 2012 .

[5]  P. Metrangolo,et al.  Organic fluorine compounds: a great opportunity for enhanced materials properties. , 2011, Chemical Society reviews.

[6]  S. Saha,et al.  Fluoride ion sensing by an anion-π interaction. , 2010, Journal of the American Chemical Society.

[7]  S. Banerjee,et al.  Selective Separation of the Sulfate Anion by In Situ Crystallization of CdII Coordination Compounds Derived from Bis(pyridyl) Ligands Equipped with a Urea/Amide Hydrogen‐Bonding Backbone , 2010 .

[8]  S. Tsuzuki,et al.  [2 + 2] Photodimerization and photopolymerization of diphenylhexatriene crystals utilizing perfluorophenyl–phenyl stacking interactions , 2009 .

[9]  S. R. P. Silva,et al.  Fluoropolymer indium-tin-oxide buffer layers for improved power conversion in organic photovoltaics , 2008 .

[10]  A. Yudin,et al.  Aromatic fluorine as a versatile control element for the construction of molecules with helical chirality. , 2008, Angewandte Chemie.

[11]  J. Steed,et al.  Gradual Transition from NH···Pyridyl Hydrogen Bonding to the NH···O Tape Synthon in Pyridyl Ureas , 2008 .

[12]  K. Dunbar,et al.  Anion-pi interactions. , 2008, Chemical Society reviews.

[13]  Michael Hird,et al.  Fluorinated liquid crystals--properties and applications. , 2007, Chemical Society reviews.

[14]  A. Neels,et al.  New Fluorinated Channel-type Host Compounds , 2007 .

[15]  S. Mecozzi,et al.  Synthesis and pH-dependent self-assembly of semifluorinated calix[4]arenes , 2007 .

[16]  B. Moyer,et al.  Anion Separation with Metal–Organic Frameworks , 2007 .

[17]  D. Quiñonero,et al.  Interplay Between Cation–π, Anion–π and π–π Interactions , 2006 .

[18]  S. Matile,et al.  Rigid oligonaphthalenediimide rods as transmembrane anion-pi slides. , 2006, Journal of the American Chemical Society.

[19]  K. Kirk,et al.  Fluorine in medicinal chemistry: Recent therapeutic applications of fluorinated small molecules , 2006 .

[20]  M. Shkunov,et al.  Thiophene and Selenophene Copolymers Incorporating Fluorinated Phenylene Units in the Main Chain: Synthesis, Characterization, and Application in Organic Field-Effect Transistors , 2005 .

[21]  D. Quiñonero,et al.  Approximate Additivity of Anion−π Interactions: An Ab Initio Study on Anion−π, Anion−π2 and Anion−π3 Complexes , 2005 .

[22]  M. Barboiu,et al.  Silver(I) coordination polymers containing heteroditopic ureidopyridine ligands: the role of ligand isomerism, hydrogen bonding, and stacking interactions. , 2005, Inorganic chemistry.

[23]  D. Nocera,et al.  Aerobic catalytic photooxidation of olefins by an electron-deficient Pacman bisiron(III) mu-oxo porphyrin. , 2005, The Journal of organic chemistry.

[24]  Franz Hofmeister,et al.  Zur Lehre von der Wirkung der Salze , 1891, Archiv für experimentelle Pathologie und Pharmakologie.

[25]  M. Milewska,et al.  Supramolecular assemblies of hydrogen-bonded carboxylic acid dimers mediated by phenyl-pentafluorophenyl stacking interactions. , 2003, Angewandte Chemie.

[26]  Anthony L. Spek,et al.  Journal of , 1993 .

[27]  Lorna M. Stimson,et al.  Arene–perfluoroarene interactions in crystal engineering 8: structures of 1∶1 complexes of hexafluorobenzene with fused-ring polyaromatic hydrocarbons , 2002 .

[28]  D. Mitzi,et al.  Intercalated organic-inorganic perovskites stabilized by fluoroaryl-aryl interactions. , 2002, Inorganic chemistry.

[29]  F. Gabbaï,et al.  Pi-complexation of biphenyl, naphthalene, and triphenylene to trimeric perfluoro-ortho-phenylene mercury. Formation of extended binary stacks with unusual luminescent properties. , 2002, Journal of the American Chemical Society.

[30]  E. Urbansky,et al.  Perchlorate as an environmental contaminant , 2002, Environmental science and pollution research international.

[31]  Lorna M. Stimson,et al.  Arene-perfluoroarene interactions in crystal engineering. Part 3. Single-crystal structures of 1 : 1 complexes of octafluoronaphthalene with fused-ring polyaromatic hydrocarbons , 2001 .

[32]  M. M. Shakirov,et al.  Reactions of Arylthiazylamides with Internal and External Fluoro Electrophiles − Formation of Products with Unusual Structures , 2001 .

[33]  J. Clyburne,et al.  The molecular quadrupole moment: solid state architectures containing organic and organometallic molecules , 2001 .

[34]  Geoffrey W. Coates,et al.  Einfluß von Perfluoraren‐Aren‐Wechselwirkungen auf das Phasenverhalten von flüssigkristallinen und polymeren Materialien , 1999 .

[35]  R. Grubbs,et al.  Influence of Perfluoroarene-Arene Interactions on the Phase Behavior of Liquid Crystalline and Polymeric Materials. , 1999, Angewandte Chemie.

[36]  Todd B. Marder,et al.  Control of single crystal structure and liquid crystal phase behaviour via arene–perfluoroarene interactions† , 1999 .

[37]  R. Perutz,et al.  A new combination of donor and acceptor: bis(η6-benzene)chromium and hexafluorobenzene form a charge-transfer stacked crystal , 1999 .

[38]  J. Ziller,et al.  PHENYL-PERFLUOROPHENYL STACKING INTERACTIONS : TOPOCHEMICAL 2+2 PHOTODIMERIZATION AND PHOTOPOLYMERIZATION OF OLEFINIC COMPOUNDS , 1998 .

[39]  R. Crabtree,et al.  A ferrocene-perfluoroarene molecular complex , 1998 .

[40]  A. Fitch,et al.  Structure of the Lowest Temperature Phase of the Solid Benzene–Hexafluorobenzene Adduct† , 1992 .

[41]  J. H. Williams,et al.  Die Struktur der Tiefsttemperaturphase des festen Benzol‐Hexafluorbenzol‐Addukts , 1992 .

[42]  Yizhak Marcus,et al.  Thermodynamics of solvation of ions. Part 5.—Gibbs free energy of hydration at 298.15 K , 1991 .

[43]  G. Pawley,et al.  An X‐ray single‐crystal study of the molecular system C6F6.C6D6 , 1982 .

[44]  D. Naae Biphenyl–perfluorobiphenyl; 1:1 molecular complex , 1979 .

[45]  C. R. Patrick,et al.  A Molecular Complex of Benzene and Hexafluorobenzene , 1960, Nature.