A facile route to inverted polymer solar cells using a precursor based zinc oxide electron transport layer

Inverted polymer:fullerene solar cells with ZnO and MoO3 transport layers are demonstrated. ZnO films are prepared through spin casting of a zinc acetylacetonate hydrate solution, followed by low temperature annealing under ambient conditions. The performance of solar cells with an inverted structure is shown to be equivalent to that of conventional cells with a bottom-anode-top-cathode configuration for three efficient polymer:fullerene systems. © 2010 Elsevier B.V. All rights reserved.

[1]  Mm Martijn Wienk,et al.  Accurate efficiency determination and stability studies of conjugated polymer/fullerene solar cells , 2002 .

[2]  W. J. Beek,et al.  Efficient Hybrid Solar Cells from Zinc Oxide Nanoparticles and a Conjugated Polymer , 2004 .

[3]  Raj René Janssen,et al.  Electronic memory effects in diodes from a zinc oxide nanoparticle-polystyrene hybrid material , 2006 .

[4]  Frederik C. Krebs,et al.  All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps , 2009 .

[5]  Martijn Lenes,et al.  Fullerene Bisadducts for Enhanced Open‐Circuit Voltages and Efficiencies in Polymer Solar Cells , 2008 .

[6]  M.J.A. de Voigt,et al.  Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes , 2000 .

[7]  F. Krebs Air stable polymer photovoltaics based on a process free from vacuum steps and fullerenes , 2008 .

[8]  Lenneke H. Slooff,et al.  Determining the internal quantum efficiency of highly efficient polymer solar cells through optical modeling , 2007 .

[9]  Zhiqiang Gao,et al.  Blocking reactions between indium-tin oxide and poly (3,4-ethylene dioxythiophene):poly(styrene sulphonate) with a self-assembly monolayer , 2002 .

[10]  Jin Cao,et al.  High stability and low driving voltage green organic light emitting diode with molybdenum oxide as buffer layer , 2008 .

[11]  Andreas Kornowski,et al.  Self-assembly of ZnO: from nanodots to nanorods. , 2002, Angewandte Chemie.

[12]  A J Heeger,et al.  Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. , 2007, Nature materials.

[13]  Yoshiki Kinoshita,et al.  Formation of Ohmic hole injection by inserting an ultrathin layer of molybdenum trioxide between indium tin oxide and organic hole-transporting layers , 2007 .

[14]  L. Jan Anton Koster,et al.  Hybrid Polymer Solar Cells from Highly Reactive Diethylzinc: MDMO–PPV versus P3HT , 2007 .

[15]  Do-Young Kim,et al.  The effect of molybdenum oxide interlayer on organic photovoltaic cells , 2009 .

[16]  Christoph J. Brabec,et al.  Bipolar Charge Transport in PCPDTBT‐PCBM Bulk‐Heterojunctions for Photovoltaic Applications , 2008 .

[17]  Mm Martijn Wienk,et al.  Double and triple junction polymer solar cells processed from solution , 2007 .

[18]  C. Brabec,et al.  Recombination‐Limited Photocurrents in Low Bandgap Polymer/Fullerene Solar Cells , 2009 .

[19]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[20]  Yanfeng Dai,et al.  Improved performances of organic light-emitting diodes with metal oxide as anode buffer , 2007 .

[21]  Vishal Shrotriya,et al.  Efficient inverted polymer solar cells , 2006 .

[22]  T Arii,et al.  Humidity controlled thermal analysis , 2006 .

[23]  Guo-Qiang Lo,et al.  An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer , 2008 .

[24]  Xiaoniu Yang,et al.  Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells. , 2005, The journal of physical chemistry. B.

[25]  Hong Ma,et al.  High performance ambient processed inverted polymer solar cells through interfacial modification with a fullerene self-assembled monolayer , 2008 .

[26]  O. Inganäs,et al.  Optical optimization of polyfluorene-fullerene blend photodiodes , 2005 .

[27]  Andrew G. Glen,et al.  APPL , 2001 .

[28]  P. Blom,et al.  Combined optical and electrical modeling of polymer: fullerene bulk heterojunction solar cells , 2008 .

[29]  S. W. Cho,et al.  The origin of the hole injection improvements at indium tin oxide/ molybdenum trioxide/N,N' -bis(1-naphthyl)-N,N' -diphenyl-1,1' '-biphenyl-4,4'-diamine interfaces , 2008 .

[30]  P. Blom,et al.  Impact of molecular weight on charge carrier dissociation in solar cells from a polyfluorene derivative , 2009 .

[31]  Gang Li,et al.  Highly efficient inverted polymer solar cell by low temperature annealing of Cs2CO3 interlayer , 2008 .

[32]  N. Arnold,et al.  Modeling of optical absorption in conjugated polymer/fullerene bulk-heterojunction plastic solar cells , 2004 .

[33]  Volker Schmidt,et al.  The effect of three-dimensional morphology on the efficiency of hybrid polymer solar cells. , 2009, Nature materials.

[34]  Xindong Zhang,et al.  Performance improvement of inverted polymer solar cells with different top electrodes by introducing a MoO3 buffer layer , 2008 .

[35]  Martin A. Green,et al.  Solar cell efficiency tables (Version 34) , 2009 .

[36]  L. S. Roman,et al.  Modeling photocurrent action spectra of photovoltaic devices based on organic thin films , 1999 .