On the Susceptibility Function of Piecewise Expanding Interval Maps

[1]  Carlangelo Liverani,et al.  Smooth Anosov flows: Correlation spectra and stability , 2007 .

[2]  R. Llave,et al.  Linear Response Function for Coupled Hyperbolic Attractors , 2006 .

[3]  D. Ruelle,et al.  Analyticity of the susceptibility function for unimodal Markovian maps of the interval , 2005, math/0501161.

[4]  D. Ruelle Differentiating the Absolutely Continuous Invariant Measure of an Interval Map f with Respect to f , 2004, math/0408096.

[5]  D. Smania On the hyperbolicity of the period-doubling fixed point , 2003, math/0301118.

[6]  D. Ruelle Application of hyperbolic dynamics to physics: Some problems and conjectures , 2004 .

[7]  Dmitry Dolgopyat,et al.  On differentiability of SRB states for partially hyperbolic systems , 2004 .

[8]  David Ruelle,et al.  Differentiation of SRB States: Correction and Complements , 2003 .

[9]  Lai-Sang Young,et al.  What Are SRB Measures, and Which Dynamical Systems Have Them? , 2002 .

[10]  V. Baladi,et al.  Dynamical Determinants via Dynamical Conjugacies for Postcritically Finite Polynomials , 2002 .

[11]  V. Baladi Positive transfer operators and decay of correlations , 2000 .

[12]  G. Keller An Ergodic Theoretic Approach to Mean Field Coupled Maps , 2000 .

[13]  Gerhard Keller,et al.  Stability of the spectrum for transfer operators , 1999 .

[14]  David Ruelle,et al.  General linear response formula in statistical mechanics, and the fluctuation-dissipation theorem far from equilibrium☆ , 1998 .

[15]  D. Ruelle Differentiation of SRB States , 1997 .

[16]  M. Tsujii On continuity of Bowen-Ruelle-Sinai measures in families of one dimensional maps , 1996 .

[17]  W. Parry DYNAMICAL ZETA FUNCTIONS FOR PIECEWISE MONOTONE MAPS OF THE INTERVAL (CRM Monograph Series 4) , 1996 .

[18]  Giovanni Gallavotti,et al.  Chaotic hypothesis: Onsager reciprocity and fluctuation-dissipation theorem , 1995, chao-dyn/9506006.

[19]  D. Ruelle Dynamical Zeta Functions for Piecewise Monotone Maps of the Interval , 1994 .

[20]  D. Ruelle Dynamical zeta functions for maps of the interval , 1994, math/9404235.

[21]  Lai-Sang Young,et al.  On the spectra of randomly perturbed expanding maps , 1993 .

[22]  S. Ershov Is a perturbation theory for dynamical chaos possible , 1993 .

[23]  Marek Rychlik,et al.  Regularity and other properties of absolutely continuous invariant measures for the quadratic family , 1992 .

[24]  G. Keller,et al.  Zeta functions and transfer operators for piecewise monotone transformations , 1990 .

[25]  Gerhard Keller,et al.  On the rate of convergence to equilibrium in one-dimensional systems , 1984 .

[26]  Gerhard Keller,et al.  Stochastic stability in some chaotic dynamical systems , 1982 .

[27]  James A. Yorke,et al.  Ergodic transformations from an interval into itself , 1978 .

[28]  J. Yorke,et al.  On the existence of invariant measures for piecewise monotonic transformations , 1973 .