Towards a better understanding of the evolution of specialized parasites of fungus-growing ant crops

Fungus-growing ants have interacted and partly coevolved with specialised microfungal parasites of the genus Escovopsis since the origin of ant fungiculture about 50 million years ago. Here, we review the recent progress in understanding the patterns of specificity of this ant-parasite association, covering both the colony/population level and comparisons between phylogenetic clades. We use a modified version of Tinbergen's four categories of evolutionary questions to structure our review in complementary approaches addressing both proximate questions of development and mechanism, and ultimate questions of (co)adaptation and evolutionary history. Using the same scheme, we identify future research questions that are likely to be particularly illuminating for understanding the ecology and evolution of Escovopsis parasitism of the cultivar maintained by fungus-growing ants.

[1]  U. Mueller,et al.  Ecology of microfungal communities in gardens of fungus-growing ants (Hymenoptera: Formicidae): a year-long survey of three species of attine ants in Central Texas. , 2011, FEMS microbiology ecology.

[2]  U. Mueller,et al.  The metapleural gland of ants , 2011, Biological reviews of the Cambridge Philosophical Society.

[3]  Anders Krogh,et al.  farming suggests key adaptations to advanced social life and fungus Acromyrmex echinatior The genome of the leaf-cutting ant Material Supplemental , 2011 .

[4]  C. Lively,et al.  Running with the Red Queen: Host-Parasite Coevolution Selects for Biparental Sex , 2011, Science.

[5]  N. Gerardo,et al.  Specificity in the symbiotic association between fungus-growing ants and protective Pseudonocardia bacteria , 2011, Proceedings of the Royal Society B: Biological Sciences.

[6]  Brian R. Johnson,et al.  The Genome Sequence of the Leaf-Cutter Ant Atta cephalotes Reveals Insights into Its Obligate Symbiotic Lifestyle , 2011, PLoS genetics.

[7]  D. Abramowski,et al.  Caste specialization in behavioral defenses against fungus garden parasites in Acromyrmex octospinosus leaf-cutting ants , 2011, Insectes Sociaux.

[8]  M. Spiteller,et al.  Chemical basis of the synergism and antagonism in microbial communities in the nests of leaf-cutting ants , 2011, Proceedings of the National Academy of Sciences.

[9]  C. Currie,et al.  Recruitment of minor workers for defense against a specialized parasite of Atta leaf-cutting ant fungus gardens , 2011 .

[10]  U. Mueller,et al.  Monoculture of Leafcutter Ant Gardens , 2010, PloS one.

[11]  Douglas W. Yu,et al.  A mixed community of actinomycetes produce multiple antibiotics for the fungus farming ant Acromyrmex octospinosus , 2010, BMC Biology.

[12]  N. Tinbergen On aims and methods of Ethology , 2010 .

[13]  U. Mueller,et al.  Comparative Dating of Attine Ant and Lepiotaceous Cultivar Phylogenies Reveals Coevolutionary Synchrony and Discord , 2010, The American Naturalist.

[14]  U. Mueller,et al.  Construction of chimaeric gardens through fungal intercropping: a symbiont choice experiment in the leafcutter ant Atta texana (Attini, Formicidae) , 2010, Behavioral Ecology and Sociobiology.

[15]  C. Currie,et al.  Presence of Multiparasite Infections Within Individual Colonies of Leaf-Cutter Ants , 2010, Environmental entomology.

[16]  C. Errard,et al.  Hygienic Behavior, Liquid-Foraging, and Trophallaxis in the Leaf-Cutting Ants, Acromyrmex subterraneus and Acromyrmex octospinosus , 2009, Journal of insect science.

[17]  N. Gerardo,et al.  Variation in Pseudonocardia antibiotic defence helps govern parasite-induced morbidity in Acromyrmex leaf-cutting ants. , 2009, Environmental microbiology reports.

[18]  U. Mueller,et al.  Generalized antifungal activity and 454-screening of Pseudonocardia and Amycolatopsis bacteria in nests of fungus-growing ants , 2009, Proceedings of the National Academy of Sciences.

[19]  C. Lively,et al.  The Maintenance of Sex, Clonal Dynamics, and Host‐Parasite Coevolution in a Mixed Population of Sexual and Asexual Snails , 2009, The American Naturalist.

[20]  J. Zimmerman,et al.  Reduced biological control and enhanced chemical pest management in the evolution of fungus farming in ants , 2009, Proceedings of the Royal Society B: Biological Sciences.

[21]  Antonis Rokas,et al.  Harnessing genomics for evolutionary insights. , 2009, Trends in ecology & evolution.

[22]  Dong-Chan Oh,et al.  Dentigerumycin: a bacterial mediator of an ant-fungus symbiosis. , 2009, Nature chemical biology.

[23]  C. Klingenberg,et al.  Revision of the fungus-growing ant genera Mycetophylax Emery and Paramycetophylax Kusnezov rev. stat., and description of Kalathomyrmex n. gen. (Formicidae: Myrmicinae: Attini) , 2009 .

[24]  R. Wirth,et al.  Candicidin-producing Streptomyces support leaf-cutting ants to protect their fungus garden against the pathogenic fungus Escovopsis , 2009, Proceedings of the National Academy of Sciences.

[25]  G. Suen,et al.  Insect Symbioses: A Case Study of Past, Present, and Future Fungus-Growing Ant Research* , 2009, Environmental entomology.

[26]  U. Mueller,et al.  Coevolution between Attine Ants and Actinomycete Bacteria: A Reevaluation , 2008, Evolution; international journal of organic evolution.

[27]  U. Mueller,et al.  Phylogeography of post‐Pleistocene population expansion in a fungus‐gardening ant and its microbial mutualists , 2008, Molecular ecology.

[28]  T. Schultz,et al.  Major evolutionary transitions in ant agriculture , 2008, Proceedings of the National Academy of Sciences.

[29]  U. Mueller,et al.  Microfungal “Weeds” in the Leafcutter Ant Symbiosis , 2008, Microbial Ecology.

[30]  Matthew E Hudson,et al.  Sequencing breakthroughs for genomic ecology and evolutionary biology , 2008, Molecular ecology resources.

[31]  N. Gerardo,et al.  Labile associations between fungus-growing ant cultivars and their garden pathogens , 2007, The ISME Journal.

[32]  T. Schultz,et al.  Low host–pathogen specificity in the leaf-cutting ant–microbe symbiosis , 2007, Proceedings of the Royal Society B: Biological Sciences.

[33]  R. Buchholz Behavioural biology: an effective and relevant conservation tool. , 2007, Trends in ecology & evolution.

[34]  C. Kost,et al.  Non-specific association between filamentous bacteria and fungus-growing ants , 2007, Naturwissenschaften.

[35]  U. Mueller,et al.  Population genetic signatures of diffuse co‐evolution between leaf‐cutting ants and their cultivar fungi , 2006, Molecular ecology.

[36]  U. Mueller,et al.  Complex host-pathogen coevolution in the Apterostigma fungus-growing ant-microbe symbiosis , 2006, BMC Evolutionary Biology.

[37]  U. Mueller,et al.  Ancient Host–Pathogen Associations Maintained by Specificity of Chemotaxis and Antibiosis , 2006, PLoS biology.

[38]  U. Mueller,et al.  Cryptic sex and many-to-one coevolution in the fungus-growing ant symbiosis. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[39]  J. Zimmerman,et al.  Active use of the metapleural glands by ants in controlling fungal infection , 2006, Proceedings of the Royal Society B: Biological Sciences.

[40]  U. Mueller,et al.  Defending against parasites: fungus-growing ants combine specialized behaviours and microbial symbionts to protect their fungus gardens , 2006, Biology Letters.

[41]  Michael Poulsen,et al.  Coevolved Crypts and Exocrine Glands Support Mutualistic Bacteria in Fungus-Growing Ants , 2006, Science.

[42]  J. Boomsma,et al.  Specificity of the mutualistic association between actinomycete bacteria and two sympatric species of Acromyrmex leaf‐cutting ants , 2005, Molecular ecology.

[43]  J. Boomsma,et al.  Mutualistic Fungi Control Crop Diversity in Fungus-Growing Ants , 2005, Science.

[44]  U. Mueller,et al.  Exploiting a mutualism: parasite specialization on cultivars within the fungus–growing ant symbiosis , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[45]  C. Currie,et al.  Pathogenicity of Escovopsis weberi: The parasite of the attine ant-microbe symbiosis directly consumes the ant-cultivated fungus , 2004, Mycologia.

[46]  U. Mueller,et al.  The infrabuccal pellet piles of fungus-growing ants , 2003, Naturwissenschaften.

[47]  W. Wcislo,et al.  Nest-founding in Acromyrmex octospinosus (Hymenoptera, Formicidae, Attini): demography and putative prophylactic behaviors , 2003, Insectes Sociaux.

[48]  Donald A Dewsbury,et al.  The 1973 Nobel Prize for Physiology or Medicine: recognition for behavioral science? , 2003, The American psychologist.

[49]  J. Boomsma,et al.  Within‐colony transmission and the cost of a mutualistic bacterium in the leaf‐cutting ant Acromyrmex octospinosus , 2003 .

[50]  J. Boomsma,et al.  Experimental evidence of a tripartite mutualism: bacteria protect ant fungus gardens from specialized parasites , 2003 .

[51]  Gi-Ho Sung,et al.  Ancient Tripartite Coevolution in the Attine Ant-Microbe Symbiosis , 2003, Science.

[52]  J. Boomsma,et al.  Variable sensitivity of fungi and bacteria to compounds produced by the metapleural glands of leaf-cutting ants , 2002, Insectes Sociaux.

[53]  J. Boomsma,et al.  Experimental evidence for the costs and hygienic significance of the antibiotic metapleural gland secretion in leaf-cutting ants , 2002, Behavioral Ecology and Sociobiology.

[54]  Paul B Rainey,et al.  Antagonistic coevolution between a bacterium and a bacteriophage , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[55]  U. Mueller,et al.  Extensive exchange of fungal cultivars between sympatric species of fungus‐growing ants , 2002, Molecular ecology.

[56]  D. Zeifman An ethological analysis of human infant crying: answering Tinbergen's four questions. , 2001, Developmental psychobiology.

[57]  U. Mueller,et al.  The Origin of the Attine Ant-Fungus Mutualism , 2001, The Quarterly Review of Biology.

[58]  C. Currie,et al.  Weeding and grooming of pathogens in agriculture by ants , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[59]  U. Mueller,et al.  Garden sharing and garden stealing in fungus-growing ants , 2000, Naturwissenschaften.

[60]  E. Morgan,et al.  Metapleural Gland Secretion of the Leaf-cutter Ant Acromyrmex octospinosus: New Compounds and Their Functional Significance , 2000, Journal of Chemical Ecology.

[61]  D. H. Jennings,et al.  Fungal Biology: Understanding the Fungal Lifestyle , 1999 .

[62]  U. Mueller,et al.  The agricultural pathology of ant fungus gardens. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[63]  J. Thompson,et al.  Specific Hypotheses on the Geographic Mosaic of Coevolution , 1999, The American Naturalist.

[64]  James A. Scott,et al.  Fungus-growing ants use antibiotic-producing bacteria to control garden parasites , 1999, Nature.

[65]  U. Mueller,et al.  The evolution of agriculture in ants , 1998, Science.

[66]  T. Schultz,et al.  Phylogeny of fungus-growing ants (Tribe Attini) based on mtDNA sequence and morphology. , 1998, Molecular phylogenetics and evolution.

[67]  Steven A. Frank,et al.  Models of Parasite Virulence , 1996, The Quarterly Review of Biology.

[68]  T. Schultz,et al.  A phylogenetic analysis of the fungus‐growing ants (Hymenoptera: Formicidae: Attini) based on morphological characters of the larvae , 1995 .

[69]  K. Seifert,et al.  Escovopsis aspergilloides, a rediscovered hyphomycete from leaf-cutting ant nests , 1995 .

[70]  T. Schultz,et al.  Phylogeny of the attine ant fungi based on analysis of small subunit ribosomal RNA gene sequences. , 1994, Science.

[71]  Ted R. Schultz,et al.  Evolutionary History of the Symbiosis Between Fungus-Growing Ants and Their Fungi , 1994, Science.

[72]  R. Ladle Parasites and sex: Catching the red queen. , 1992, Trends in ecology & evolution.

[73]  E. Charnov,et al.  Complementary Approaches to the Understanding of Parasitoid Oviposition Decisions , 1985 .

[74]  Roy M. Anderson,et al.  The Population Dynamics of Microparasites and Their Invertebrate Hosts , 1981 .

[75]  W. Hamilton Sex versus non-sex versus parasite , 1980 .

[76]  B. Macneill,et al.  Parasexuality in Plant Pathogenic Fungi , 1969 .

[77]  N. A. Weber Fungus-Growing Ants , 1966, Science.

[78]  T. Eisner,et al.  The Infrabuccal Pocket of a Formicine Ant: a Social Filtration Device , 1962 .

[79]  R. Koch,et al.  Ueber den augenblicklichen Stand der bakteriologischen Choleradiagnose , 1893, Zeitschrift für Hygiene und Infektionskrankheiten.

[80]  David S. Guttman,et al.  ANNUAL REVIEW OF PHYTOPATHOLOGY, VOL 49 , 2011 .

[81]  O. Bueno,et al.  Variability of non-mutualistic filamentous fungi associated withAtta sexdens rubropilosa nests , 2008, Folia Microbiologica.

[82]  P. Asprelli,et al.  The Geographic Mosaic of Coevolution , 2006 .

[83]  L. Aravind,et al.  A COMMUNITY OF ANTS , FUNGI , AND BACTERIA : A Multilateral Approach to Studying Symbiosis , 2005 .

[84]  C. Currie The ecology and evolution of a quadripartite symbiosis, examining the interactions among Attine ants, fungi, and actinomycetes , 2000 .

[85]  K. Clay,et al.  The Red Queen Hypothesis and plant/pathogen interactions. , 1996, Annual review of phytopathology.

[86]  T. D. Lucia,et al.  Escovopsis, a new genus from leaf cutting ant nests to replace Phialocladus nomem invalidum , 1990 .

[87]  E. Mayr Adaptation and selection , 1981 .

[88]  J. Krebs,et al.  An introduction to behavioural ecology , 1981 .

[89]  N. A. Weber Gardening ants, the attines , 1972 .

[90]  J. AllenF,et al.  The American Naturalist Vol , 1897 .

[91]  Alfred Möller Die Pilzgärten einiger südamerikanischer Ameisen , 1893 .