An outlier robust unit root test with an application to the extended Nelson-Plosser data

This paper considers unit root tests based on robust estimators with a high breakdown point and high efficiency. The asymptotic distribution of these tests is derived. Critical values for the test are obtained via simulation. It is found that the size of the classical OLS based Dickey-Fuller test breaks down if the time series contains additive outliers For innovative outliers the size of the robust test is less stable, while its size-adjusted power properties are better. An example is provided by applying the robust tests to the extended Nelson-Plosser data. For four series the null hypothesis of nonstationarity is rejected.

[1]  David F. Findley,et al.  Applied Time Series Analysis II. , 1983 .

[2]  F. Hampel A General Qualitative Definition of Robustness , 1971 .

[3]  V. Yohai,et al.  Influence Functionals for Time Series , 1986 .

[4]  P. Perron,et al.  Nonstationarity and Level Shifts With an Application to Purchasing Power Parity , 1992 .

[5]  A. Siegel Robust regression using repeated medians , 1982 .

[6]  D. Andrews Exactly Median-Unbiased Estimation of First Order Autoregressive/Unit Root Models , 1993 .

[7]  P. J. Huber Robust Regression: Asymptotics, Conjectures and Monte Carlo , 1973 .

[8]  P. Perron,et al.  The Great Crash, The Oil Price Shock And The Unit Root Hypothesis , 1989 .

[9]  P. Billingsley,et al.  Convergence of Probability Measures , 1969 .

[10]  P. Rousseeuw Least Median of Squares Regression , 1984 .

[11]  P. J. Huber Robust Estimation of a Location Parameter , 1964 .

[12]  V. Yohai HIGH BREAKDOWN-POINT AND HIGH EFFICIENCY ROBUST ESTIMATES FOR REGRESSION , 1987 .

[13]  Andre Lucas,et al.  Unit Root Tests Based on M Estimators , 1995, Econometric Theory.

[14]  S. Weisberg,et al.  Added variable plots in linear regression , 1991 .

[15]  Francis X. Diebold,et al.  Unit roots in economic time series: a selective survey , 1988 .

[16]  Chris Chatfield,et al.  Introduction to Statistical Time Series. , 1976 .

[17]  P. Phillips Testing for a Unit Root in Time Series Regression , 1988 .

[18]  H. White A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity , 1980 .

[19]  P. Phillips,et al.  Multiple Time Series Regression with Integrated Processes , 1986 .

[20]  Philip Hans Franses,et al.  The effects of additive outliers on tests for unit roots and cointegration , 1994 .

[21]  R. Douglas Martin,et al.  ROBUST METHODS FOR TIME SERIES , 1981 .

[22]  Lawrence J. Christiano,et al.  Searching for a Break in Gnp , 1988 .

[23]  Oscar H. Bustos,et al.  Robust Estimates for ARMA Models , 1986 .

[24]  Peter J. Rousseeuw,et al.  ROBUST REGRESSION BY MEANS OF S-ESTIMATORS , 1984 .

[25]  D. G. Simpson,et al.  On One-Step GM Estimates and Stability of Inferences in Linear Regression , 1992 .

[26]  P. Papantoni-Kazakos,et al.  Some Aspects of Qualitative Robustness in Time Series , 1984 .

[27]  P. Phillips Time series regression with a unit root , 1987 .

[28]  R. Martin Robust Estimation for Time Series Autoregressions , 1979 .

[29]  Herman K. van Dijk,et al.  On Bayesian routes to unit roots , 1991 .

[30]  C. Nelson,et al.  Trends and random walks in macroeconmic time series: Some evidence and implications , 1982 .

[31]  K. Knight Limit Theory for M-Estimates in an Integrated Infinite Variance , 1991, Econometric Theory.

[32]  W. Härdle,et al.  Robust and Nonlinear Time Series Analysis , 1984 .

[33]  S. Heiler,et al.  RECURSIVE GENERALIZED M ESTIMATES FOR AUTOREGRESSIVE MOVING-AVERAGE MODELS , 1992 .

[34]  Werner A. Stahel,et al.  Robust Statistics: The Approach Based on Influence Functions , 1987 .

[35]  V. Yohai,et al.  High Breakdown-Point Estimates of Regression by Means of the Minimization of an Efficient Scale , 1988 .

[36]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[37]  Sanford Weisberg,et al.  Directions in Robust Statistics and Diagnostics , 1991 .

[38]  K. Knight Limit theory for autoregressive‐parameter estimates in an infinite‐variance random walk , 1989 .