THE CASE FOR THE DUAL HALO OF THE MILKY WAY

Carollo et al. have recently resolved the stellar population of the Milky Way halo into at least two distinct components, an inner halo and an outer halo. This result has been criticized by Schönrich et al., who claim that the retrograde signature associated with the outer halo is due to the adoption of faulty distances. We refute this claim, and demonstrate that the Schönrich et al. photometric distances are themselves flawed because they adopted an incorrect main-sequence absolute magnitude relationship from the work of Ivezić et al. When compared to the recommended relation from Ivezić et al., which is tied to a Milky Way globular cluster distance scale and accounts for age and metallicity effects, the relation adopted by Schönrich et al. yields up to 18% shorter distances for stars near the main-sequence turnoff (TO). Use of the correct relationship yields agreement between the distances assigned by Carollo et al. and Ivezić et al. for low-metallicity dwarfs to within 6%–10%. Schönrich et al. also point out that intermediate-gravity stars (3.5 ⩽log g < 4.0) with colors redder than the TO region are likely misclassified, with which we concur. We implement a new procedure to reassign luminosity classifications for the TO stars that require it. New derivations of the rotational behavior demonstrate that the retrograde signature and high velocity dispersion of the outer-halo population remain. We summarize additional lines of evidence for a dual halo, including a test of the retrograde signature based on proper motions alone, and conclude that the preponderance of evidence strongly rejects the single-halo interpretation.

[1]  J. Schaye,et al.  Global structure and kinematics of stellar haloes in cosmological hydrodynamic simulations , 2011, 1111.1747.

[2]  Garching,et al.  Chemical signatures of formation processes in the stellar populations of simulated galaxies , 2011, 1110.5864.

[3]  T. Beers,et al.  INSIGHT INTO THE FORMATION OF THE MILKY WAY THROUGH COLD HALO SUBSTRUCTURE. II. THE ELEMENTAL ABUNDANCES OF ECHOS , 2011, 1104.1424.

[4]  H. Rix,et al.  THE STRUCTURE OF THE SAGITTARIUS STELLAR STREAM AS TRACED BY BLUE HORIZONTAL BRANCH STARS , 2011, 1103.4610.

[5]  Claudio Dalla Vecchia,et al.  Cosmological simulations of the formation of the stellar haloes around disc galaxies , 2011, 1102.2526.

[6]  Aniruddha R. Thakar,et al.  ERRATUM: “THE EIGHTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST DATA FROM SDSS-III” (2011, ApJS, 193, 29) , 2011 .

[7]  L. Casagrande,et al.  On the alleged duality of the Galactic halo , 2010, 1012.0842.

[8]  Ž. Ivezić,et al.  THE SHAPE AND PROFILE OF THE MILKY WAY HALO AS SEEN BY THE CANADA–FRANCE–HAWAII TELESCOPE LEGACY SURVEY , 2010, 1011.4487.

[9]  Sergey E. Koposov,et al.  QUANTIFYING KINEMATIC SUBSTRUCTURE IN THE MILKY WAY'S STELLAR HALO , 2010, 1011.1925.

[10]  H. Rix,et al.  STELLAR POPULATION VARIATIONS IN THE MILKY WAY's STELLAR HALO , 2010, 1010.2239.

[11]  V. Belokurov,et al.  Rotation of halo populations in the Milky Way and M31 , 2010, 1008.3067.

[12]  T. Beers,et al.  THE SEGUE STELLAR PARAMETER PIPELINE. IV. VALIDATION WITH AN EXTENDED SAMPLE OF GALACTIC GLOBULAR AND OPEN CLUSTERS , 2010, 1008.1959.

[13]  C. Harrison,et al.  MAPPING THE GALACTIC HALO WITH BLUE HORIZONTAL BRANCH STARS FROM THE TWO-DEGREE FIELD QUASAR REDSHIFT SURVEY , 2010, 1007.0013.

[14]  D. Hogg,et al.  THE DUAL ORIGIN OF STELLAR HALOS. II. CHEMICAL ABUNDANCES AS TRACERS OF FORMATION HISTORY , 2010, 1004.3789.

[15]  H. Rix,et al.  MAPPING THE STELLAR STRUCTURE OF THE MILKY WAY THICK DISK AND HALO USING SEGUE PHOTOMETRY , 2009, 0911.3900.

[16]  Linhua Jiang,et al.  LIGHT CURVE TEMPLATES AND GALACTIC DISTRIBUTION OF RR LYRAE STARS FROM SLOAN DIGITAL SKY SURVEY STRIPE 82 , 2009, 0910.4611.

[17]  Ž. Ivezić,et al.  STRUCTURE AND KINEMATICS OF THE STELLAR HALOS AND THICK DISKS OF THE MILKY WAY BASED ON CALIBRATION STARS FROM SLOAN DIGITAL SKY SURVEY DR7 , 2009, 0909.3019.

[18]  Z. Ivezic,et al.  THE MILKY WAY TOMOGRAPHY WITH SDSS. III. STELLAR KINEMATICS , 2009, 0909.0013.

[19]  C. Prieto,et al.  INSIGHT INTO THE FORMATION OF THE MILKY WAY THROUGH COLD HALO SUBSTRUCTURE. I. THE ECHOS OF MILKY WAY FORMATION , 2009, 0908.2627.

[20]  T. Beers,et al.  A PHOTOMETRIC METALLICITY ESTIMATE OF THE VIRGO STELLAR OVERDENSITY , 2009, 0907.1082.

[21]  Heidelberg,et al.  Substructure revealed by RR Lyraes in SDSS Stripe 82 , 2009, 0906.0498.

[22]  Ž. Ivezić,et al.  ACCEPTED FOR PUBLICATION IN APJ Preprint typeset using LATEX style emulateapj v. 10/09/06 GALACTIC GLOBULAR AND OPEN CLUSTERS IN THE SLOAN DIGITAL SKY SURVEY. II. TEST OF THEORETICAL STELLAR ISOCHRONES , 2022 .

[23]  C. Brook,et al.  THE DUAL ORIGIN OF STELLAR HALOS , 2009, 0904.3333.

[24]  Heidi Jo Newberg,et al.  SEGUE: A SPECTROSCOPIC SURVEY OF 240,000 STARS WITH g = 14–20 , 2009, 0902.1781.

[25]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[26]  D. York,et al.  Galactic Globular and Open Clusters in the Sloan Digital Sky Survey. I. Crowded-Field Photometry and Cluster Fiducial Sequences in ugriz , 2008, 0808.0001.

[27]  B. Gibson,et al.  THE RADIAL VELOCITY EXPERIMENT (RAVE): SECOND DATA RELEASE , 2008, 0806.0546.

[28]  Mamoru Doi,et al.  The Milky Way Tomography with SDSS. II. Stellar Metallicity , 2008, 0804.3850.

[29]  H. Rix,et al.  The Milky Way’s Circular Velocity Curve to 60 kpc and an Estimate of the Dark Matter Halo Mass from the Kinematics of ~2400 SDSS Blue Horizontal-Branch Stars , 2008, 0801.1232.

[30]  B. Yanny,et al.  Submitted for publication in the Astronomical Journal The SEGUE Stellar Parameter Pipeline. III. Comparison with High-Resolution Spectroscopy of SDSS/SEGUE Field Stars 1 , 2022 .

[31]  Australian National University,et al.  THE SEGUE STELLAR PARAMETER PIPELINE. II. VALIDATION WITH GALACTIC GLOBULAR AND OPEN CLUSTERS , 2007, 0710.5778.

[32]  Australian National University,et al.  THE SEGUE STELLAR PARAMETER PIPELINE. I. DESCRIPTION AND COMPARISON OF INDIVIDUAL METHODS , 2007, 0710.5645.

[33]  J. Kaplan,et al.  THE SLOAN DIGITAL SKY SURVEY-II SUPERNOVA SURVEY: TECHNICAL SUMMARY , 2007, 0708.2749.

[34]  Y. Wadadekar,et al.  Submitted to ApJS Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE SIXTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2022 .

[35]  M. Raddick,et al.  The Fifth Data Release of the Sloan Digital Sky Survey , 2007, 0707.3380.

[36]  D. York,et al.  Two stellar components in the halo of the Milky Way , 2007, Nature.

[37]  Zeljko Ivezic,et al.  The Accretion Origin of the Milky Way’s Stellar Halo , 2007, 0706.0004.

[38]  S. Hawley,et al.  Evidence for Distinct Components of the Galactic Stellar Halo from 838 RR Lyrae Stars Discovered in the LONEOS-I Survey , 2007, 0706.1583.

[39]  C. Cacciari,et al.  Kinematic structure in the Galactic halo at the North Galactic Pole: RR Lyrae and BHB stars show different kinematics , 2006, Proceedings of the International Astronomical Union.

[40]  M. Pinsonneault,et al.  The Distances to Open Clusters from Main-Sequence Fitting. III. Improved Accuracy with Empirically Calibrated Isochrones , 2006, astro-ph/0607549.

[41]  Olivier Bienayme,et al.  THE RADIAL VELOCITY EXPERIMENT (RAVE): FIFTH DATA RELEASE , 2013, 1609.03210.

[42]  A. K. Vivas,et al.  The QUEST RR Lyrae Survey. II. The Halo Overdensities in the First Catalog , 2006, astro-ph/0604359.

[43]  A. Pietrinferni,et al.  A Large Stellar Evolution Database for Population Synthesis Studies. II. Stellar Models and Isochrones for an α-enhanced Metal Distribution , 2006, astro-ph/0603721.

[44]  David Schlegel,et al.  The Milky Way Tomography with SDSS. I. Stellar Number Density Distribution , 2005, astro-ph/0510520.

[45]  A. P. Oates,et al.  SkyMapper and the Southern Sky Survey , 2007, astro-ph/0702511.

[46]  Jong-Hak Woo,et al.  Y2 Isochrones with an Improved Core Overshoot Treatment , 2004 .

[47]  S. Cassisi,et al.  A Large Stellar Evolution Database for Population Synthesis Studies. I. Scaled Solar Models and Isochrones , 2004, astro-ph/0405193.

[48]  D. York,et al.  Blue Horizontal-Branch Stars in the Sloan Digital Sky Survey. I. Sample Selection and Structure in the Galactic Halo , 2003, astro-ph/0311324.

[49]  D. York,et al.  Blue Horizontal-Branch Stars in the Sloan Digital Sky Survey. II. Kinematics of the Galactic Halo , 2003, astro-ph/0311325.

[50]  W. Press,et al.  Numerical Recipes in C++: The Art of Scientific Computing (2nd edn)1 Numerical Recipes Example Book (C++) (2nd edn)2 Numerical Recipes Multi-Language Code CD ROM with LINUX or UNIX Single-Screen License Revised Version3 , 2003 .

[51]  V. A. Marsakov,et al.  Two populations among the metal-poor field RR Lyrae stars , 2002, astro-ph/0211263.

[52]  M. G. Lattanzi,et al.  GAIA: Composition, formation and evolution of the Galaxy , 2001, astro-ph/0101235.

[53]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[54]  D. York,et al.  Identification of A-colored Stars and Structure in the Halo of the Milky Way from Sloan Digital Sky Survey Commissioning Data , 2000, astro-ph/0004128.

[55]  T. Beers,et al.  Kinematics of Metal-poor Stars in the Galaxy. III. Formation of the Stellar Halo and Thick Disk as Revealed from a Large Sample of Nonkinematically Selected Stars , 2000, astro-ph/0003087.

[56]  T. Beers,et al.  Spectroscopy of Hot Stars in the Galactic Halo. II. The Identification and Classification of Horizontal-Branch and Other A-Type Stars , 1999 .

[57]  J. B. Laird,et al.  A Survey of Proper Motion Stars. XIII. The Halo Population , 1996 .

[58]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[59]  N. Suntzeff,et al.  The Structure of the Galactic Halo Outside the Solar Circle as Traced by the Blue Horizontal Branch Stars , 1994 .

[60]  Y. Yoshii,et al.  Kinematics of Metal-poor Stars in the Galaxy. II. Proper Motions for a Large Nonkinematically Selected Sample , 1992, astro-ph/0003103.

[61]  T. Beers,et al.  Detection of a galactic color gradient for blue horizontal-branch stars of the halo field and implications for the halo age and density distributions , 1991 .

[62]  J. Sommer-Larsen,et al.  ARMCHAIR CARTOGRAPHY - A MAP OF THE GALACTIC HALO BASED ON OBSERVATIONS OF LOCAL, METAL-POOR STARS , 1990 .

[63]  William H. Press,et al.  Numerical Recipes in FORTRAN - The Art of Scientific Computing, 2nd Edition , 1987 .

[64]  T. Beers,et al.  A Search for Stars of Very Low Metal Abundance. III. UBV Photometry of Metal-weak Candidates , 1985 .

[65]  J. Peacock Two-dimensional goodness-of-fit testing in astronomy , 1983 .

[66]  Thomas E. Lutz,et al.  ON THE USE OF TRIGONOMETRIC PARALLAXES FOR THE CALIBRATION OF LUMINOSITY SYSTEMS: THEORY , 1973 .

[67]  Jason Barnes,et al.  Inside and out , 1891, The Hospital.

[68]  H. Morrison,et al.  Formation of the galactic halo .... inside and out : a meeting held in honor of the 65th birthday of George Preston, Tucson, Arizona, 9-11 October 1995 , 1996 .

[69]  S. Ryan,et al.  Population studies - evidence for accretion of the galactic halo , 1989 .

[70]  F. Hartwick The structure of the Galactic halo. , 1987 .