Inhibition of the spoilage yeast Pichia occidentalis in a wheat germ diet for mass rearing of Drosophila suzukii

A wheat germ diet was initiated for the mass rearing of Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) and subsequent production of its parasitoid Trichopria drosophilae Perkins (Hymenoptera: Diapriidae). However, the main problem of the diet was the microbial contamination affecting the batches of good pupae production. Therefore, the concentration of four antimicrobials was optimized through the Taguchi orthogonal array for the inhibition of microbial contamination, identified as Pichia occidentalis (Kurtzman et al.) Kurtzman et al. The optimized Taguchi‐selected‐antimicrobials concentrations were 1.33 g l−1 of potassium sorbate, 1.33 g l−1 of propyl paraben, 1.33 g l−1 of sodium propionate, and 0.16 g l−1 of triclosan. When the antimicrobials were added to the diet, colony‐forming units of P. occidentalis were inhibited by two orders of magnitude. Such inhibition means that the D. suzukii females produced 61.1 and 79.3% more pupae and adults, respectively, than the diet with no antimicrobials. These results increase the potential of the wheat germ diet as an artificial diet for mass rearing of D. suzukii and T. drosophilae.

[1]  A. Herz,et al.  More Power with Flower for the Pupal Parasitoid Trichopria drosophilae: A Candidate for Biological Control of the Spotted Wing Drosophila , 2021, Insects.

[2]  Marly Alejandra Gavilanes-Martínez,et al.  Antifungal activity of boric acid, triclosan and zinc oxide against different clinically relevant Candida species , 2021, Mycoses.

[3]  P. Zarbin,et al.  Insecticidal and oviposition deterrent effects of essential oils of Baccharis spp. and histological assessment against Drosophila suzukii (Diptera: Drosophilidae) , 2021, Scientific Reports.

[4]  Xingya Wang Biological control of Drosophila suzukii. , 2020 .

[5]  M. Aceituno-Medina,et al.  Mass Rearing, Quality Parameters, and Bioconversion in Drosophila suzukii (Diptera: Drosophilidae) for Sterile Insect Technique Purposes , 2020, Journal of Economic Entomology.

[6]  J. Sánchez-González,et al.  First Report of the Parasitoid Ganaspis brasiliensis Ihering (Hymenoptera: Figitidae) in Mexico1 , 2020, Entomological News.

[7]  J. Sánchez-González,et al.  Biological and Population Parameters, as well as Oviposition Preference, of Two Pupal Parasitoids of Drosophila suzukii (Diptera: Drosophilidae) in Mexico , 2020, Journal of Entomological Science.

[8]  M. Brzóska,et al.  Review of the safety of application of cosmetic products containing parabens , 2020, Journal of applied toxicology : JAT.

[9]  J. Sánchez-González,et al.  Single and Combined Release of Trichopria drosophilae (Hymenoptera: Diapriidae) to Control Drosophila suzukii (Diptera: Drosophilidae) , 2019, Neotropical Entomology.

[10]  J. Hadrich,et al.  Economic Impact of Spotted Wing Drosophila (Diptera: Drosophilidae) Yield Loss on Minnesota Raspberry Farms: A Grower Survey , 2019, Journal of Integrated Pest Management.

[11]  F. Zalom,et al.  Identification and risk assessment of spinosad resistance in a California population of Drosophila suzukii. , 2018, Pest management science.

[12]  J. Sánchez-González,et al.  Optimization of a wheat germ diet for mass rearing Drosophila suzukii , 2018, Entomologia Experimentalis et Applicata.

[13]  D. Bernardi,et al.  Biology and fertility life table of Drosophila suzukii on artificial diets , 2018, Entomologia Experimentalis et Applicata.

[14]  J. A. Sánchez-González,et al.  Colecta de Pupas de Drosophila suzukii1 en Dieta de Germen de Trigo, por Lavado en Agua , 2018, Southwestern Entomologist.

[15]  G. Anfora,et al.  Augmentative releases of Trichopria drosophilae for the suppression of early season Drosophila suzukii populations , 2018, BioControl.

[16]  L. Beukeboom,et al.  Optimization of native biocontrol agents, with parasitoids of the invasive pest Drosophila suzukii as an example , 2018, Evolutionary applications.

[17]  A. Cohen Ecology of Insect Rearing Systems: A Mini-Review of Insect Rearing Papers from 1906-2017 , 2018 .

[18]  M. Broniatowski,et al.  Influence of Parabens on Bacteria and Fungi Cellular Membranes: Studies in Model Two-Dimensional Lipid Systems. , 2018, The journal of physical chemistry. B.

[19]  T. Long,et al.  Nutritional geometry and fitness consequences in Drosophila suzukii, the Spotted‐Wing Drosophila , 2018, Ecology and evolution.

[20]  C. Carli,et al.  Host location and dispersal ability of the cosmopolitan parasitoid Trichopria drosophilae released to control the invasive spotted wing Drosophila , 2018 .

[21]  Hugo Cesar,et al.  Fresh banana as an alternative host for mass rearing Drosophila suzukii , 2018 .

[22]  J. Adamczyk,et al.  Novel Aspects of Drosophila suzukii (Diptera: Drosophilidae) Biology and an Improved Method for Culturing this Invasive Species with a Modified D. melanogaster Diet , 2016, Florida Entomologist.

[23]  E. Marchetti,et al.  Drosophila parasitoids in northern Italy and their potential to attack the exotic pest Drosophila suzukii , 2016, Journal of Pest Science.

[24]  P. Girod,et al.  Current SWD IPM tactics and their practical implementation in fruit crops across different regions around the world , 2016, Journal of Pest Science.

[25]  Alejandro Hernandez,et al.  Parasitoides de Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) en Colima, México , 2015 .

[26]  S. Kondapalli,et al.  Application of Taguchi based Design of Experiments to Fusion Arc Weld Processes: A Review , 2015 .

[27]  J. González,et al.  Trampeo y Registro del Parasitoide Pachycrepoideus vindemmiae (Rondani) (Hymenoptera: Pteromalidae) sobre Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) en México , 2015 .

[28]  V. Vacchini MICROBIAL ECOLOGY OF THE SPOTTED WING FLY DROSOPHILA SUZUKII , 2014 .

[29]  J. Tormos,et al.  La drosófila de las alas manchadas "Drosophila suzukii": cría en laboratorio y ensayos preliminares con parasitoides , 2014 .

[30]  F. Zalom,et al.  Associations of Yeasts with Spotted-Wing Drosophila (Drosophila suzukii; Diptera: Drosophilidae) in Cherries and Raspberries , 2012, Applied and Environmental Microbiology.

[31]  A. Cohen Insect Diets: Science and Technology , 2003 .

[32]  A. Cohen,et al.  Effect of Antifungal Agents on Biological Fitness of Lygus hesperus (Heteroptera: Miridae) , 2002, Journal of economic entomology.

[33]  A. Mendonca Mechanism of inhibitory action of potassium sorbate in Escherichia coli , 1992 .

[34]  Nancy J. Moon,et al.  Inhibition of the growth of acid tolerant yeasts by acetate, lactate and propionate and their synergistic mixtures , 1983 .