Sodium storage and capacity retention behavior derived from high-spin/low-spin Fe redox reaction in monoclinic Prussian blue based on operando Mössbauer characterization

[1]  Qiannan Liu,et al.  Prussian Blue Analogues for Sodium‐Ion Batteries: Past, Present, and Future , 2021, Advanced materials.

[2]  Mihui Park,et al.  Activating a Multielectron Reaction of NASICON-Structured Cathodes toward High Energy Density for Sodium-Ion Batteries. , 2021, Journal of the American Chemical Society.

[3]  S. Dou,et al.  Epitaxial Nickel Ferrocyanide Stabilizes Jahn-Teller Distortions of Manganese Ferrocyanide for Sodium-Ion Batteries. , 2021, Angewandte Chemie.

[4]  H. Pang,et al.  Recent advancements in Prussian blue analogues: Preparation and application in batteries , 2021 .

[5]  Yu Ding,et al.  Defect-free-induced Na+ disordering in electrode materials , 2021 .

[6]  Huamin Zhang,et al.  Controllable Design Coupled with Finite Element Analysis of Low‐Tortuosity Electrode Architecture for Advanced Sodium‐Ion Batteries with Ultra‐High Mass Loading , 2021, Advanced Energy Materials.

[7]  J. Maibach,et al.  Moisture-Driven Degradation Pathways in Prussian White Cathode Material for Sodium-Ion Batteries , 2021, ACS applied materials & interfaces.

[8]  K. Amine,et al.  Vacancy-Enabled O3 Phase Stabilization for Manganese-rich Layered Sodium Cathodes. , 2021, Angewandte Chemie.

[9]  L. Mai,et al.  Highly Crystallized Prussian Blue with Enhanced Kinetics for Highly Efficient Sodium Storage. , 2021, ACS applied materials & interfaces.

[10]  F. Pan,et al.  Structure and Properties of Prussian Blue Analogues in Energy Storage and Conversion Applications , 2020, Advanced Functional Materials.

[11]  Chenghao Yang,et al.  Dual‐Strategy of Cation‐Doping and Nanoengineering Enables Fast and Stable Sodium‐Ion Storage in a Novel Fe/Mn‐Based Layered Oxide Cathode , 2020, Advanced science.

[12]  J. Tarascon Na-ion versus Li-ion Batteries: Complementarity Rather than Competitiveness , 2020, Joule.

[13]  S. Belin,et al.  Unravelling lithiation mechanisms of iron trifluoride by operando X-ray absorption spectroscopy and MCR-ALS chemometric tools , 2020, New Journal of Chemistry.

[14]  W. Brant,et al.  Influence of sodium content on the thermal behavior of low vacancy Prussian white cathode material. , 2020, Dalton transactions.

[15]  S. Dou,et al.  Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries , 2020, Nature Communications.

[16]  S. Dou,et al.  The Cathode Choice for Commercialization of Sodium‐Ion Batteries: Layered Transition Metal Oxides versus Prussian Blue Analogs , 2020, Advanced Functional Materials.

[17]  Huakun Liu,et al.  Stress Distortion Restraint to Boost the Sodium Ion Storage Performance of a Novel Binary Hexacyanoferrate , 2019, Advanced Energy Materials.

[18]  J. Réthoré,et al.  Concentration-Gradient Prussian Blue Cathodes for Na-Ion Batteries , 2019, ACS Energy Letters.

[19]  M. Giorgetti,et al.  Highlighting the Reversible Manganese Electroactivity in Na‐Rich Manganese Hexacyanoferrate Material for Li‐ and Na‐Ion Storage , 2019, Small Methods.

[20]  A. Goodwin,et al.  Hidden diversity of vacancy networks in Prussian blue analogues , 2019, Nature.

[21]  S. Schmid,et al.  Selective Control of Composition in Prussian White for Enhanced Material Properties , 2019, Chemistry of Materials.

[22]  Y. Liu,et al.  Yolk-shell Prussian blue nanoparticles with fast ion diffusion for sodium-ion battery , 2019, Materials Letters.

[23]  Ping Nie,et al.  Novel acetic acid induced Na-rich Prussian blue nanocubes with iron defects as cathodes for sodium ion batteries , 2019, Journal of Materials Chemistry A.

[24]  M. Giorgetti,et al.  Applying chemometrics to study battery materials: Towards the comprehensive analysis of complex operando datasets , 2019, Energy Storage Materials.

[25]  J. Xie,et al.  Na-Rich Prussian White Cathodes for Long-Life Sodium-Ion Batteries , 2018, ACS Sustainable Chemistry & Engineering.

[26]  P. Ajayan,et al.  A 3D graphene current collector boosts ultrahigh specific capacity in a highly uniform Prussian blue@graphene composite as a freestanding cathode for sodium ion batteries. , 2018, Nanoscale.

[27]  S. Passerini,et al.  A cost and resource analysis of sodium-ion batteries , 2018 .

[28]  M. Armand,et al.  A review on hexacyanoferrate-based materials for energy storage and smart windows: challenges and perspectives , 2017 .

[29]  F. Kang,et al.  Cation exchange formation of prussian blue analogue submicroboxes for high-performance Na-ion hybrid supercapacitors , 2017 .

[30]  Feng Wu,et al.  A novel border-rich Prussian blue synthetized by inhibitor control as cathode for sodium ion batteries , 2017 .

[31]  Jang‐Yeon Hwang,et al.  Sodium-ion batteries: present and future. , 2017, Chemical Society reviews.

[32]  K. Kubota,et al.  A novel K-ion battery: hexacyanoferrate(II)/graphite cell , 2017 .

[33]  A. Manthiram,et al.  Low-Cost High-Energy Potassium Cathode. , 2017, Journal of the American Chemical Society.

[34]  Haegyeom Kim,et al.  Recent Progress in Electrode Materials for Sodium‐Ion Batteries , 2016 .

[35]  Valérie Briois,et al.  ROCK: the new Quick-EXAFS beamline at SOLEIL , 2016 .

[36]  Yang Liu,et al.  Sodium storage in Na-rich NaxFeFe(CN)6 nanocubes , 2015 .

[37]  Motoaki Nishijima,et al.  Rhombohedral prussian white as cathode for rechargeable sodium-ion batteries. , 2015, Journal of the American Chemical Society.

[38]  Yu-Guo Guo,et al.  High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries , 2014 .

[39]  E. Boccaleri,et al.  The vibrational spectra of the cyanide ligand revisited: the ν(CN) infrared and Raman spectroscopy of Prussian blue and its analogues , 2011 .

[40]  M. Ávila,et al.  Porous framework of T2(Fe(CN)6) xH2O with T ¼ Co, Ni, Cu, Zn, and H2 storage , 2008 .

[41]  E. Boccaleri,et al.  The vibrational spectra of the cyanide ligand revisited. Bridging cyanides. , 2006, Inorganic chemistry.

[42]  M Newville,et al.  ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. , 2005, Journal of synchrotron radiation.

[43]  T. Yokoyama,et al.  Photoinduced phase transition of RbMnFe ( CN ) 6 studied by x-ray-absorption fine structure spectroscopy , 2002 .

[44]  Gavin Vaughan,et al.  In situ X-ray diffraction techniques as a powerful tool to study battery electrode materials , 2002 .

[45]  F. Varret,et al.  Photoinduced Ferrimagnetic Systems in Prussian Blue Analogues CIxCo4[Fe(CN)6]y (CI = Alkali Cation). 1. Conditions to Observe the Phenomenon , 2000 .

[46]  D. Schwarzenbach,et al.  The crystal structure of Prussian Blue: Fe4[Fe(CN)6]3.xH2O , 1977 .

[47]  R. Huggins,et al.  Determination of the Kinetic Parameters of Mixed‐Conducting Electrodes and Application to the System Li3Sb , 1977 .

[48]  W. O. Milligan,et al.  Structure of the titanium-iron cyanide complexes , 1968 .

[49]  Dehui Deng,et al.  Evolution of the solid electrolyte interphase enabled by FeNX/C catalysts for sodium-ion storage , 2022, Energy & Environmental Science.

[50]  Xiaodong Zhuang,et al.  Two-dimensional organic cathode materials for alkali-metal-ion batteries , 2018 .

[51]  Ya‐Xia Yin,et al.  Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries , 2014, Nano Research.