A Genome-Wide Association Study of Upper Aerodigestive Tract Cancers Conducted within the INHANCE Consortium

Genome-wide association studies (GWAS) have been successful in identifying common genetic variation involved in susceptibility to etiologically complex disease. We conducted a GWAS to identify common genetic variation involved in susceptibility to upper aero-digestive tract (UADT) cancers. Genome-wide genotyping was carried out using the Illumina HumanHap300 beadchips in 2,091 UADT cancer cases and 3,513 controls from two large European multi-centre UADT cancer studies, as well as 4,821 generic controls. The 19 top-ranked variants were investigated further in an additional 6,514 UADT cancer cases and 7,892 controls of European descent from an additional 13 UADT cancer studies participating in the INHANCE consortium. Five common variants presented evidence for significant association in the combined analysis (p≤5×10−7). Two novel variants were identified, a 4q21 variant (rs1494961, p = 1×10−8) located near DNA repair related genes HEL308 and FAM175A (or Abraxas) and a 12q24 variant (rs4767364, p = 2×10−8) located in an extended linkage disequilibrium region that contains multiple genes including the aldehyde dehydrogenase 2 (ALDH2) gene. Three remaining variants are located in the ADH gene cluster and were identified previously in a candidate gene study involving some of these samples. The association between these three variants and UADT cancers was independently replicated in 5,092 UADT cancer cases and 6,794 controls non-overlapping samples presented here (rs1573496-ADH7, p = 5×10−8; rs1229984-ADH1B, p = 7×10−9; and rs698-ADH1C, p = 0.02). These results implicate two variants at 4q21 and 12q24 and further highlight three ADH variants in UADT cancer susceptibility.

S. Zhong | A. Olshan | Jingchun Luo | S. Heath | W. Ahrens | R. Hayes | F. Clavel-Chapelon | E. Riboli | C. Marsit | P. Vineis | S. Franceschi | A. Tjønneland | K. Overvad | L. Vatten | I. Gut | A. Metspalu | Li-E. Wang | Q. Wei | C. Healy | M. Lathrop | D. Zélénika | P. Brennan | V. Gaborieau | J. Lissowska | X. Castellsagué | T. Key | P. Peeters | H. Bueno-De-Mesquita | A. Trichopoulou | D. Trichopoulos | M. Romkes | E. Sturgis | H. Blanché | Zuo-Feng Zhang | P. Rudnai | Shen-Chih Chang | T. Truong | J. Lubiński | P. Boffetta | L. Forétova | R. Talamini | I. Njølstad | P. Galan | G. Hallmans | S. Schwartz | W. Funkhouser | K. Kelsey | K. Khaw | A. Znaor | E. Fabianova | R. Herrero | L. Simonato | H. Boeing | D. Palli | V. Krogh | S. Panico | R. Tumino | C. González | H. Nelson | D. Zaridze | V. Janout | V. Bencko | I. Holcatova | R. Hung | M. Kumle | G. Byrnes | S. Boccia | G. Macfarlane | C. Navarro | A. Boland | T. Liloglou | G. Goodman | P. Lagiou | G. Cadoni | J. McLaughlin | L. Richiardi | F. Merletti | S. Benhamou | A. Bucur | M. Hashibe | M. McClean | J. McKay | A. Agudo | L. Barzan | C. Canova | D. Conway | K. Kjaerheim | R. Lowry | T. Macfarlane | Kristjan Välk | J. Muscat | W. Peters | M. Weissler | Chu Chen | Sherianne Fish | J. Field | N. Szeszenia-Dąbrowska | J. Manni | S. Koifman | C. Bouchardy | E. Ardanaz | J. Quirós | M. Delepine | M. Foglio | D. Lechner | J. Linseisen | A. Chabrier | S. Chuang | O. Shangina | P. McKinney | M. Toner | M. Curado | A. Menezes | V. Wünsch-Filho | J. E. Neto | L. Garrote | D. Arzani | J. Trubicka | M. Lener | D. Oszutowska | D. Doody | P. Lazarus | C. Gallagher | S. Buch | T. Nukui | M. Lacko | C. Martínez | N. Larranaga | Tõnu Voodern | C. Martínez | Li‐E. Wang | Li E. Wang | H. Bueno-de-Mesquita | N. Szeszenia‐Da̧browska | L. Foretova | J. Mckay | Amélie Chabrier | Q. Wei | H. Nelson | E. Fabiánová | Chuang Chun Shu | C. Canova | Thérèse Truong | Zuo‐Feng Zhang | Q. Wei | P. Brennan | E. Riboli | Thérèse Truong

[1]  D. Chasman,et al.  Multiple new genetic loci associated with kidney function and Chronic Kidney Disease: The CKDGen Consortium , 2010 .

[2]  Uwe Völker,et al.  New loci associated with kidney function and chronic kidney disease , 2010, Nature Genetics.

[3]  S. Heath,et al.  Association between a 15q25 gene variant, smoking quantity and tobacco-related cancers among 17 000 individuals. , 2010, International journal of epidemiology.

[4]  Yusuke Nakamura,et al.  Genome-wide association study of hematological and biochemical traits in a Japanese population , 2010, Nature Genetics.

[5]  A. Zuckerman,et al.  IARC Monographs on the Evaluation of Carcinogenic Risks to Humans , 1995, IARC monographs on the evaluation of carcinogenic risks to humans.

[6]  D. Clayton,et al.  Genome-wide association study and meta-analysis finds over 40 loci affect risk of type 1 diabetes , 2009, Nature Genetics.

[7]  Yurii S. Aulchenko,et al.  ProbABEL package for genome-wide association analysis of imputed data , 2010, BMC Bioinformatics.

[8]  Christian Gieger,et al.  A genome-wide meta-analysis identifies 22 loci associated with eight hematological parameters in the HaemGen consortium , 2009, Nature Genetics.

[9]  Christian Gieger,et al.  Multiple loci influence erythrocyte phenotypes in the CHARGE Consortium , 2009, Nature Genetics.

[10]  D. Winn,et al.  Enhancing epidemiologic research on head and neck cancer: INHANCE - The international head and neck cancer epidemiology consortium. , 2009, Oral Oncology.

[11]  S. Ring,et al.  A non-synonymous variant in ADH1B is strongly associated with prenatal alcohol use in a European sample of pregnant women , 2009, Human molecular genetics.

[12]  Sampath Prahalad,et al.  Variants in TNFAIP3, STAT4, and C12orf30 loci associated with multiple autoimmune diseases are also associated with juvenile idiopathic arthritis. , 2009, Arthritis and rheumatism.

[13]  Michael Boehnke,et al.  Quantifying and correcting for the winner's curse in genetic association studies , 2009, Genetic epidemiology.

[14]  Taesung Park,et al.  A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits , 2009, Nature Genetics.

[15]  David Goldman,et al.  The Alcohol Flushing Response: An Unrecognized Risk Factor for Esophageal Cancer from Alcohol Consumption , 2009, PLoS medicine.

[16]  W. Ahrens,et al.  Alcohol-related cancers and genetic susceptibility in Europe: the ARCAGE project: study samples and data collection , 2009, European journal of cancer prevention : the official journal of the European Cancer Prevention Organisation.

[17]  N. Martin,et al.  Associations of ADH and ALDH2 gene variation with self report alcohol reactions, consumption and dependence: an integrated analysis. , 2009, Human molecular genetics.

[18]  H. Morgenstern,et al.  Type of alcoholic beverage and risk of head and neck cancer--a pooled analysis within the INHANCE Consortium. , 2009, American journal of epidemiology.

[19]  A. Olshan,et al.  Family history of cancer: Pooled analysis in the International Head and Neck Cancer Epidemiology Consortium , 2009, International journal of cancer.

[20]  Vincent Plagnol,et al.  Meta-analysis of genome-wide association study data identifies additional type 1 diabetes risk loci , 2008, Nature Genetics.

[21]  Simon Heath,et al.  Lung cancer susceptibility locus at 5p15.33 , 2008, Nature Genetics.

[22]  Stephen Chanock,et al.  Population Substructure and Control Selection in Genome-Wide Association Studies , 2008, PloS one.

[23]  P. Brennan,et al.  Multiple ADH genes are associated with upper aerodigestive cancers , 2008, Nature Genetics.

[24]  G. Mills,et al.  Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1 , 2008, Nature Genetics.

[25]  Paolo Vineis,et al.  A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25 , 2008, Nature.

[26]  Daniel F. Gudbjartsson,et al.  A variant associated with nicotine dependence, lung cancer and peripheral arterial disease , 2008, Nature.

[27]  A. Jakubowska,et al.  Constitutional CHEK2 mutations are associated with a decreased risk of lung and laryngeal cancers. , 2008, Carcinogenesis.

[28]  C. la Vecchia,et al.  Family history and the risk of oral and pharyngeal cancer , 2007, International journal of cancer.

[29]  B. Nordestgaard,et al.  Alcoholism and alcohol drinking habits predicted from alcohol dehydrogenase genes , 2006, The Pharmacogenomics Journal.

[30]  K. Mossman The Wellcome Trust Case Control Consortium, U.K. , 2008 .

[31]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[32]  R. Peto,et al.  Uncommon CHEK2 mis-sense variant and reduced risk of tobacco-related cancers: case control study. , 2007, Human molecular genetics.

[33]  Simon C. Potter,et al.  Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls , 2007, Nature.

[34]  Steven P Gygi,et al.  Abraxas and RAP80 Form a BRCA1 Protein Complex Required for the DNA Damage Response , 2007, Science.

[35]  T. Watts,et al.  Alcohol drinking in never users of tobacco, cigarette smoking in never drinkers and the risk of head and neck cancer: pooled analysis in the international head and neck cancer epidemiology consortium , 2007, BDJ.

[36]  D. Reich,et al.  Principal components analysis corrects for stratification in genome-wide association studies , 2006, Nature Genetics.

[37]  N. Martin,et al.  Effects of variation at the ALDH2 locus on alcohol metabolism, sensitivity, consumption, and dependence in Europeans. , 2006, Alcoholism, clinical and experimental research.

[38]  N. Schork,et al.  Diplotype trend regression analysis of the ADH gene cluster and the ALDH2 gene: multiple significant associations with alcohol dependence. , 2006, American journal of human genetics.

[39]  S. Lewis,et al.  Alcohol, ALDH2, and Esophageal Cancer: A Meta-analysis Which Illustrates the Potentials and Limitations of a Mendelian Randomization Approach , 2005, Cancer Epidemiology Biomarkers & Prevention.

[40]  Mark Daly,et al.  Haploview: analysis and visualization of LD and haplotype maps , 2005, Bioinform..

[41]  P. Brennan,et al.  Occupational Exposure to Vinyl Chloride, Acrylonitrile and Styrene and Lung Cancer Risk (Europe) , 2004, Cancer Causes & Control.

[42]  A. Olshan,et al.  Pooled analysis of alcohol dehydrogenase genotypes and head and neck cancer: a HuGE review. , 2004, American journal of epidemiology.

[43]  S. Franceschi,et al.  Human papillomavirus and oral cancer: the International Agency for Research on Cancer multicenter study. , 2003, Journal of the National Cancer Institute.

[44]  R. Wood,et al.  POLN, a Nuclear PolA Family DNA Polymerase Homologous to the DNA Cross-link Sensitivity Protein Mus308* , 2003, Journal of Biological Chemistry.

[45]  M. Stephens,et al.  Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. , 2003, Genetics.

[46]  R. Wood,et al.  A Human DNA Helicase Homologous to the DNA Cross-link Sensitivity Protein Mus308* , 2002, The Journal of Biological Chemistry.

[47]  J. Ferlay,et al.  Globocan 2000 : cancer incidence, mortality and prevalence worldwide , 2001 .

[48]  M H Skolnick,et al.  Systematic population-based assessment of cancer risk in first-degree relatives of cancer probands. , 1994, Journal of the National Cancer Institute.

[49]  D. Winn,et al.  Familial risk in oral and pharyngeal cancer. , 1994, European journal of cancer. Part B, Oral oncology.

[50]  N Enomoto,et al.  Acetaldehyde metabolism in different aldehyde dehydrogenase-2 genotypes. , 1991, Alcoholism, clinical and experimental research.

[51]  H. Haenel,et al.  Alcohol Drinking. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Vol 44. Herausgegeben von World Health Organization and International Agency for Research on Cancer. 416 Seiten, zahlr. Tab. IARC, Lyon 1988. Preis: 65,‐ Sw.fr.; 52,‐ US$ , 1989 .

[52]  A Yoshida,et al.  Molecular abnormality of an inactive aldehyde dehydrogenase variant commonly found in Orientals. , 1984, Proceedings of the National Academy of Sciences of the United States of America.