Cascade complexation: a single cyano bridge links a pair of Cu(II) cations.

A series of structurally characterised mu-cyanodicopper(II) cryptates shows moderately strong antiferromagnetic interaction in the range -2J= 150-200 cm(-1), at the high end of the observed range for such assemblies. The lowest magnetic exchange coupling parameter is displayed where there is slight bending of the M-CN-M assembly, enforced by the constraints of cryptate encapsulation. Thermally accessible triplet EPR spectra are observed with zero-field splittings of the order of 0.13-0.14 cm(-1), confirming collinear ground-state dz2 orbitals for Cu(II), consistent with their trigonal-bipyramidal coordination geometries.

[1]  F. Lloret,et al.  Architecture dependence on the steric constrains of the ligand in cyano-bridged copper(I) and copper(II)-copper(I) mixed-valence polymer compounds containing diamines: crystal structures and spectroscopic and magnetic properties. , 2002, Inorganic chemistry.

[2]  V. McKee,et al.  Cascade chemistry in azacryptand cages: bridging carbonates and methylcarbonatesElectronic supplementary information (ESI) available: magnetic data. See http://www.rsc.org/suppdata/dt/b1/b110449g/ , 2002 .

[3]  S. Alvarez,et al.  Exchange coupling in cyano-bridged homodinuclear Cu(II) and Ni(II) complexes: synthesis, structure, magnetism, and density functional theoretical study. , 2001, Inorganic chemistry.

[4]  L. Spiccia,et al.  Cyano bridged dinuclear Cu(II) complexes , 2000 .

[5]  A. Chan,et al.  Synthesis and characterization of two copper cyanide complexes with hexagonal Cu6 units , 2000 .

[6]  S. Mazzetto,et al.  Ground-State, Mode-Dependent Vibronic Coupling in Some Simple, Cyanide-Bridged Transition-Metal Donor-Acceptor Complexes. , 1999, Inorganic chemistry.

[7]  V. Marvaud,et al.  MOLECULES TO BUILD SOLIDS : HIGH TC MOLECULE-BASED MAGNETS BY DESIGN AND RECENT REVIVAL OF CYANO COMPLEXES CHEMISTRY , 1999 .

[8]  V. McKee,et al.  Constrained ferromagnetic coupling in dinuclear µ1,3-azido nickel(II) cryptate compounds. Crystal structure and magnetic behaviour of [Ni2(L1)(N3)(H2O)][CF3SO3]3·2H2O·EtOH {L1 = N[(CH2)2NHCH2(C6H4-m)CH2NH(CH2)2]3N}† , 1999 .

[9]  V. McKee,et al.  Cascade complexation of pseudo-halide by dicopper cryptates: a linear Cu–NNN–Cu unit , 1996 .

[10]  E. McInnes,et al.  Multi-frequency single-crystal and powder electron paramagnetic resonance spectroscopy of [Cu2(chp)4](chp = 6-chloro-2-pyridonate) , 1996 .

[11]  J. Malone,et al.  Hydrolytically-sensitive hexaimino and hydrolytically-inert octaamino-cryptand hosts for dicopper , 1995 .

[12]  V. McKee,et al.  Dicopper cryptates with 1,1 and 1,3 bridging ligands : spectroscopic, magnetic and electrochemical properties , 1994 .

[13]  M. Drew,et al.  Cascade complexes of an octaaza cryptand: co-ordinated azide with linear M–NNN–M geometry , 1992 .

[14]  P. van der Sluis,et al.  BYPASS: an effective method for the refinement of crystal structures containing disordered solvent regions , 1990 .

[15]  M. Melnik,et al.  Mixed-valence copper(I)copper(II) compounds: analysis and classification of crystallographic data , 1988 .