Molybdenum Selenide Electrocatalysts for Electrochemical Hydrogen Evolution Reaction

[1]  J. Tu,et al.  N-doped CoO nanowire arrays as efficient electrocatalysts for oxygen evolution reaction , 2019, Journal of Energy Chemistry.

[2]  Rong Chen,et al.  Synthesis of flower-like MoSe2@MoS2 nanocomposites as the high efficient water splitting electrocatalyst , 2018, Materials Letters.

[3]  J. Ding,et al.  Ar2+ Beam Irradiation-Induced Multivancancies in MoSe2 Nanosheet for Enhanced Electrochemical Hydrogen Evolution , 2018, ACS Energy Letters.

[4]  J. Tu,et al.  Boosting sodium ion storage by anchoring MoO2 on vertical graphene arrays , 2018 .

[5]  Q. Ma,et al.  Synthesis of nitrogen-doped MoSe2 nanosheets with enhanced electrocatalytic activity for hydrogen evolution reaction , 2018, International Journal of Hydrogen Energy.

[6]  Qinghua Zhang,et al.  Phase Modulation of (1T‐2H)‐MoSe2/TiC‐C Shell/Core Arrays via Nitrogen Doping for Highly Efficient Hydrogen Evolution Reaction , 2018, Advanced materials.

[7]  Dong Xie,et al.  Enhancing Ultrafast Lithium Ion Storage of Li4Ti5O12 by Tailored TiC/C Core/Shell Skeleton Plus Nitrogen Doping , 2018, Advanced Functional Materials.

[8]  J. Ding,et al.  Dual-Native Vacancy Activated Basal Plane and Conductivity of MoSe2 with High-Efficiency Hydrogen Evolution Reaction. , 2018, Small.

[9]  S. Hao,et al.  A self-supported amorphous Ni-P alloy on a CuO nanowire array: an efficient 3D electrode catalyst for water splitting in alkaline media. , 2018, Chemical communications.

[10]  S. Liang,et al.  N-doped one-dimensional carbonaceous backbones supported MoSe2 nanosheets as superior electrodes for energy storage and conversion , 2018 .

[11]  D. M. Fernandes,et al.  Polyoxometalate‐graphene Electrocatalysts for the Hydrogen Evolution Reaction , 2018 .

[12]  J. Ding,et al.  Activation of the MoSe2 basal plane and Se-edge by B doping for enhanced hydrogen evolution , 2018 .

[13]  Yoon Jun Son,et al.  Electrochemically Synthesized Nanoporous Molybdenum Carbide as a Durable Electrocatalyst for Hydrogen Evolution Reaction , 2017, Advanced science.

[14]  J. Tu,et al.  Hollow TiO2@Co9S8 Core–Branch Arrays as Bifunctional Electrocatalysts for Efficient Oxygen/Hydrogen Production , 2017, Advanced science.

[15]  Shaojun Guo,et al.  Oxygen Vacancies Dominated NiS2/CoS2 Interface Porous Nanowires for Portable Zn–Air Batteries Driven Water Splitting Devices , 2017, Advanced materials.

[16]  J. Tu,et al.  Hierarchical porous Ti2Nb10O29 nanospheres as superior anode materials for lithium ion storage , 2017 .

[17]  Yi Tang,et al.  Mesoporous and Skeletal Molybdenum Carbide for Hydrogen Evolution Reaction: Diatomite-type Structure and Formation Mechanism , 2017 .

[18]  A. Eftekhari Molybdenum diselenide (MoSe2) for energy storage, catalysis, and optoelectronics , 2017 .

[19]  Jun Luo,et al.  Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices , 2017, Science.

[20]  F. Cheng,et al.  High-index faceted CuFeS2 nanosheets with enhanced behavior for boosting hydrogen evolution reaction. , 2017, Nanoscale.

[21]  Shiwei Lin,et al.  Directional Construction of Vertical Nitrogen‐Doped 1T‐2H MoSe2/Graphene Shell/Core Nanoflake Arrays for Efficient Hydrogen Evolution Reaction , 2017, Advanced materials.

[22]  A. Eftekhari Electrocatalysts for hydrogen evolution reaction , 2017 .

[23]  Y. Kang,et al.  MoSe2 Embedded CNT-Reduced Graphene Oxide Composite Microsphere with Superior Sodium Ion Storage and Electrocatalytic Hydrogen Evolution Performances. , 2017, ACS applied materials & interfaces.

[24]  L. Zhen,et al.  In Situ Growth of Sn‐Doped Ni3S2 Nanosheets on Ni Foam as High‐Performance Electrocatalyst for Hydrogen Evolution Reaction , 2017 .

[25]  Wei Wang,et al.  NiO/CoN Porous Nanowires as Efficient Bifunctional Catalysts for Zn-Air Batteries. , 2017, ACS nano.

[26]  Z. Wen,et al.  Strongly Coupled 3D Nanohybrids with Ni2P/Carbon Nanosheets as pH‐Universal Hydrogen Evolution Reaction Electrocatalysts , 2017 .

[27]  Lei Liao,et al.  Mo2C/Reduced‐Graphene‐Oxide Nanocomposite: An Efficient Electrocatalyst for the Hydrogen Evolution Reaction , 2016 .

[28]  Peitao Liu,et al.  Enhanced Catalytic Activities of Metal-Phase-Assisted 1T@2H-MoSe2 Nanosheets for Hydrogen Evolution , 2016 .

[29]  R. Tenne,et al.  Effects of p‐ and n‐type Doping in Inorganic Fullerene MoS2 on the Hydrogen Evolution Reaction , 2016 .

[30]  Shouheng Sun,et al.  Ni-C-N Nanosheets as Catalyst for Hydrogen Evolution Reaction. , 2016, Journal of the American Chemical Society.

[31]  Yao Sun,et al.  Visualization of the electrocatalytic activity of three-dimensional MoSe2@reduced graphene oxide hybrid nanostructures for oxygen reduction reaction , 2016, Nano Research.

[32]  Jingguang G. Chen,et al.  Trends in Hydrogen Evolution Activity of Metal‐Modified Molybdenum Carbides in Alkaline and Acid Electrolytes , 2016 .

[33]  A. Chaturvedi,et al.  Rapid synthesis of transition metal dichalcogenide few-layer thin crystals by the microwave-induced-plasma assisted method , 2016 .

[34]  Yanguang Li,et al.  MoxW1−x(SySe1−y)2 Alloy Nanoflakes for High‐Performance Electrocatalytic Hydrogen Evolution , 2016 .

[35]  B. Pan,et al.  Design and Epitaxial Growth of MoSe2–NiSe Vertical Heteronanostructures with Electronic Modulation for Enhanced Hydrogen Evolution Reaction , 2016 .

[36]  Jinhua Ye,et al.  Active Sites Implanted Carbon Cages in Core-Shell Architecture: Highly Active and Durable Electrocatalyst for Hydrogen Evolution Reaction. , 2016, ACS nano.

[37]  Jun Jin,et al.  Designed synthesis of multi-walled carbon nanotubes@Cu@MoS2 hybrid as advanced electrocatalyst for highly efficient hydrogen evolution reaction , 2015 .

[38]  R. Ma,et al.  Ultrafine Molybdenum Carbide Nanoparticles Composited with Carbon as a Highly Active Hydrogen-Evolution Electrocatalyst. , 2015, Angewandte Chemie.

[39]  Lain‐Jong Li,et al.  Three-Dimensional Heterostructures of MoS2 Nanosheets on Conducting MoO2 as an Efficient Electrocatalyst To Enhance Hydrogen Evolution Reaction. , 2015, ACS applied materials & interfaces.

[40]  M. Volosova,et al.  Pulsed laser deposition of nanocomposite MoSex/Mo thin-film catalysts for hydrogen evolution reaction , 2015 .

[41]  Zhenxing Wang,et al.  Enhanced Electrochemical H2 Evolution by Few‐Layered Metallic WS2(1−x)Se2x Nanoribbons , 2015 .

[42]  Tatsuya Shinagawa,et al.  Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion , 2015, Scientific Reports.

[43]  Peiyi Wu,et al.  Facile preparation of 3D MoS2/MoSe2 nanosheet–graphene networks as efficient electrocatalysts for the hydrogen evolution reaction , 2015 .

[44]  Hongtao Yuan,et al.  Pressure induced metallization with absence of structural transition in layered molybdenum diselenide , 2015, Nature Communications.

[45]  M. Terrones,et al.  Formation and Interlayer Decoupling of Colloidal MoSe2 Nanoflowers , 2015 .

[46]  Ya‐Xia Yin,et al.  Elemental Selenium for Electrochemical Energy Storage. , 2015, The journal of physical chemistry letters.

[47]  Yao Zheng,et al.  Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory. , 2015, Angewandte Chemie.

[48]  M. Pumera,et al.  Electrochemistry of transition metal dichalcogenides: strong dependence on the metal-to-chalcogen composition and exfoliation method. , 2014, ACS nano.

[49]  F. Xia,et al.  Two-dimensional material nanophotonics , 2014, Nature Photonics.

[50]  B. Pan,et al.  Fast colloidal synthesis of scalable Mo-rich hierarchical ultrathin MoSe(2-x) nanosheets for high-performance hydrogen evolution. , 2014, Nanoscale.

[51]  Lain-Jong Li,et al.  Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. , 2014, ACS nano.

[52]  Nathan S. Lewis,et al.  Operando Synthesis of Macroporous Molybdenum Diselenide Films for Electrocatalysis of the Hydrogen-Evolution Reaction , 2014 .

[53]  Yanguang Li,et al.  Ultrathin WS2 nanoflakes as a high-performance electrocatalyst for the hydrogen evolution reaction. , 2014, Angewandte Chemie.

[54]  Xiaoming Ge,et al.  Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction , 2014 .

[55]  Zhiyi Lu,et al.  A 3D Nanoporous Ni–Mo Electrocatalyst with Negligible Overpotential for Alkaline Hydrogen Evolution , 2014 .

[56]  Abdullah M. Asiri,et al.  Carbon nanotubes decorated with CoP nanocrystals: a highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution. , 2014, Angewandte Chemie.

[57]  Yao Zheng,et al.  Hydrogen evolution by a metal-free electrocatalyst , 2014, Nature Communications.

[58]  Xiaoxi Huang,et al.  Cobalt-embedded nitrogen-rich carbon nanotubes efficiently catalyze hydrogen evolution reaction at all pH values. , 2014, Angewandte Chemie.

[59]  Z. Yin,et al.  Preparation and applications of mechanically exfoliated single-layer and multilayer MoS₂ and WSe₂ nanosheets. , 2014, Accounts of chemical research.

[60]  Chen Xu,et al.  Ultrathin S-doped MoSe2 nanosheets for efficient hydrogen evolution , 2014 .

[61]  Yi Cui,et al.  CoSe2 nanoparticles grown on carbon fiber paper: an efficient and stable electrocatalyst for hydrogen evolution reaction. , 2014, Journal of the American Chemical Society.

[62]  S. Luo,et al.  Effect of Pressure and Temperature on Structural Stability of MoS2 , 2014 .

[63]  Zhi-Xun Shen,et al.  Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. , 2014, Nature nanotechnology.

[64]  G. Eda,et al.  Conducting MoS₂ nanosheets as catalysts for hydrogen evolution reaction. , 2013, Nano letters.

[65]  Charles C. L. McCrory,et al.  Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. , 2013, Journal of the American Chemical Society.

[66]  Fei Meng,et al.  Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. , 2013, Journal of the American Chemical Society.

[67]  Haotian Wang,et al.  MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces. , 2013, Nano letters.

[68]  James R. McKone,et al.  Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. , 2013, Journal of the American Chemical Society.

[69]  Jian Wei Guo,et al.  Hydrogen-treated commercial WO3 as an efficient electrocatalyst for triiodide reduction in dye-sensitized solar cells. , 2013, Chemical communications.

[70]  R Morris Bullock,et al.  An iron complex with pendent amines as a molecular electrocatalyst for oxidation of hydrogen. , 2013, Nature chemistry.

[71]  Desheng Kong,et al.  Synthesis of MoS2 and MoSe2 films with vertically aligned layers. , 2013, Nano letters.

[72]  E. Tosatti,et al.  Structure change, layer sliding, and metallization in high-pressure MoS 2 , 2013, 1301.0781.

[73]  M. Field,et al.  Copper molybdenum sulfide: a new efficient electrocatalyst for hydrogen production from water , 2012 .

[74]  Zhiyuan Zeng,et al.  An effective method for the fabrication of few-layer-thick inorganic nanosheets. , 2012, Angewandte Chemie.

[75]  Gang Lu,et al.  Optical identification of single- and few-layer MoS₂ sheets. , 2012, Small.

[76]  Zhiyuan Zeng,et al.  Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. , 2011, Angewandte Chemie.

[77]  Guosong Hong,et al.  MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. , 2011, Journal of the American Chemical Society.

[78]  J. Coleman,et al.  Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.

[79]  Feng Jiao,et al.  Nanostructured cobalt and manganese oxide clusters as efficient water oxidation catalysts , 2010 .

[80]  Masashi Nakamura,et al.  Structural Effects on the Hydrogen Oxidation Reaction on n(111)−(111) Surfaces of Platinum , 2009 .

[81]  V. Stamenkovic,et al.  Adsorption of hydrogen on Pt(111) and Pt(100) surfaces and its role in the HOR , 2008 .

[82]  George H. Miley,et al.  Cathode electrocatalyst selection and deposition for a direct borohydride/hydrogen peroxide fuel cell , 2007 .

[83]  J. Nørskov,et al.  Cyclic voltammograms for H on Pt(111) and Pt(100) from first principles. , 2007, Physical review letters.

[84]  S. Trasatti,et al.  Comment on “Trends in the Exchange Current for Hydrogen Evolution” [J. Electrochem. Soc., 152, J23 (2005)] , 2006 .

[85]  P N Ross,et al.  The impact of geometric and surface electronic properties of pt-catalysts on the particle size effect in electrocatalysis. , 2005, The journal of physical chemistry. B.

[86]  K. Novoselov,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[87]  Thomas Bligaard,et al.  Trends in the exchange current for hydrogen evolution , 2005 .

[88]  M. Jayachandran,et al.  Pulsed electrodeposition and characterization of molybdenum diselenide thin film , 2005 .

[89]  B. Conway,et al.  Nature of electrosorbed H and its relation to metal dependence of catalysis in cathodic H2 evolution , 2002 .

[90]  B. V. Tilak,et al.  Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H , 2002 .

[91]  Weichao Yu,et al.  Hydrothermal Synthesis and Characterization of Single-Molecular-Layer MoS2 and MoSe2 , 2001 .

[92]  J. Lukkien,et al.  Modeling the butterfly: the voltammetry of (√3×√3)R30° and p(2×2) overlayers on (111) electrodes , 2000 .

[93]  A. Zolfaghari,et al.  Temperature-dependent research on Pt(111) and Pt(100) electrodes in aqueous H2SO4☆ , 1999 .

[94]  B. Conway,et al.  Comparative evaluation of surface structure specificity of kinetics of UPD and OPD of H at single-crystal Pt electrodes 1 Presented at the Surface Electrochemistry Conference, Alicante, Spain, September 1997. 1 , 1998 .

[95]  A. C. Chialvo,et al.  Kinetics of hydrogen evolution reaction with Frumkin adsorption : re-examination of the Volmer-Heyrovsky and Volmer-Tafel routes , 1998 .

[96]  B. Conway,et al.  Specificity of the kinetics of H2 evolution to the structure of single-crystal Pt surfaces, and the relation between opd and upd H , 1998 .

[97]  Philip N. Ross,et al.  TEMPERATURE-DEPENDENT HYDROGEN ELECTROCHEMISTRY ON PLATINUM LOW-INDEX SINGLE-CRYSTAL SURFACES IN ACID SOLUTIONS , 1997 .

[98]  A. Zolfaghari,et al.  New findings on hydrogen and anion adsorption at a Pt(111) electrode in aqueous H2SO4 solution generated by temperature variation , 1997 .

[99]  A. Zolfaghari,et al.  The temperature dependence of hydrogen and anion adsorption at a Pt( 100) electrode in aqueous H2SO4 solution , 1997 .

[100]  R. H. Williams,et al.  Structural analysis of InGaAs tensile layers on InP , 1996 .

[101]  M. R. G. Chialvo,et al.  Hydrogen evolution reaction: Analysis of the Volmer-Heyrovsky-Tafel mechanism with a generalized adsorption model , 1994 .

[102]  K. Kinoshita,et al.  Particle Size Effects for Oxygen Reduction on Highly Dispersed Platinum in Acid Electrolytes , 1990 .

[103]  S. Morrison,et al.  Single-layer MoS2 , 1986 .

[104]  P. Ross,et al.  HYDROGEN CHEMISORPTION ON Pt SINGLE CRYSTAL SURFACES IN ACIDIC SOLUTIONS , 1981 .

[105]  M. Dines Lithium intercalation via n-Butyllithium of the layered transition metal dichalcogenides , 1975 .

[106]  P. B. James,et al.  The crystal structure of MoSe2 , 1963 .

[107]  B. Conway,et al.  Electrolytic Hydrogen Evolution Kinetics and Its Relation to the Electronic and Adsorptive Properties of the Metal , 1957 .

[108]  Bockris Jo Recent developments in the study of hydrogen overpotential. , 1948 .

[109]  C. Mu,et al.  One-pot synthesis of nanosheet-assembled hierarchical MoSe2/CoSe2 microcages for the enhanced performance of electrocatalytic hydrogen evolution , 2016 .

[110]  A. Neto,et al.  Two-dimensional crystals-based heterostructures: materials with tailored properties , 2012 .

[111]  A. Ertas,et al.  Equation of State Measurement of Molybdenum Disulfide , 2006 .

[112]  P. Stonehart,et al.  Reaction pathways and poisons—II: The rate controlling step for electrochemical oxidation of hydrogen on Pt in acid and poisoning of the reaction by CO , 1975 .

[113]  R. Parsons The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen , 1958 .

[114]  P. Rüetschi,et al.  Hydrogen Overvoltage and Electrode Material. A Theoretical Analysis , 1955 .

[115]  J. Bockris Recent developments in the study of hydrogen overpotential. , 1948, Chemical reviews.

[116]  J. A. V. Butler,et al.  The mechanism of overvoltage and its relation to the combination of hydrogen atoms at metal electrodes , 1932 .