Design and scale‐up of chemical reactors for nanoparticle precipitation

In recent years there has been a growing interest in production on an industrial scale of particles with size in the sub-micron range (40-200 nm). This can be done by controlling particle formation in order to nucleate very small particles and by tailoring the particle surface in order to avoid particle aggregation and produce stable suspensions. In this work we focus on the role of turbulent mixing on particle formation in confined impinging jet reactors. In particular, we show how computational fluid dynamics and simple precipitation models could be used to derive scale-up criteria for the production of nanoparticles. © 2006 American Institute of Chemical Engineers AIChE J, 2006

[1]  Ying Liu,et al.  CFD predictions for chemical processing in a confined impinging‐jets reactor , 2006 .

[2]  A. Kanaev,et al.  Sol–Gel Reactor With Rapid Micromixing: Modelling and Measurements of Titanium Oxide Nano-particle Growth , 2005 .

[3]  A. E. Nielsen,et al.  Electrolyte crystal growth kinetics , 1984 .

[4]  Laurent Falk,et al.  Determination of local energy dissipation rates in impinging jets by a chemical reaction method , 1999 .

[5]  J. Rieger,et al.  Organic Nanoparticles in the Aqueous Phase-Theory, Experiment, and Use. , 2001, Angewandte Chemie.

[6]  H. Muhr,et al.  New technologies for the precipitation of solid particles with controlled properties , 2002 .

[7]  Alfons Mersmann Crystallization and precipitation , 1999 .

[8]  Antonello Barresi,et al.  CFD simulation of mixing and reaction: the relevance of the micro-mixing model. , 2003 .

[9]  A. Mahajan,et al.  Micromixing effects in a two-impinging-jets precipitator , 1996 .

[10]  Massimo Morbidelli,et al.  Role of turbulent shear rate distribution in aggregation and breakage processes , 2006 .

[11]  C. Monnin,et al.  A thermodynamic model for the solubility of barite and celestite in electrolyte solutions and seawater to 200°C and to 1 kbar , 1999 .

[12]  C. Brinker,et al.  Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing , 1990 .

[13]  A. E. Nielsen Electrolyte crystal growth mechanisms , 1984 .

[14]  Wolfgang Peukert,et al.  Prediction of aggregation kinetics based on surface properties of nanoparticles , 2005 .

[15]  Königlichen Gesllschaft der Wissenschaften zu Göttingen,et al.  Nachrichten von der Königl. Gesellschaft der Wissenschaften und der Georg-Augusts-Universität zu Göttingen , 1884 .

[16]  Jacques Villermaux,et al.  Are barium sulphate kinetics sufficiently known for testing precipitation reactor models , 1996 .

[17]  Robert K. Prud'homme,et al.  Flash NanoPrecipitation of Organic Actives and Block Copolymers using a Confined Impinging Jets Mixer , 2003 .

[18]  M. Kind,et al.  Morphology and internal structure of barium sulfate--derivation of a new growth mechanism. , 2004, Journal of colloid and interface science.

[19]  Robert K. Prud'homme,et al.  Chemical Processing and Micromixing in Confined Impinging Jets , 2003 .

[20]  Antonello Barresi,et al.  Nucleation, growth, and agglomeration in barium sulfate turbulent precipitation , 2002 .

[21]  Ryszard Pohorecki,et al.  Mixing-precipitation model with application to double feed semibatch precipitation , 1995 .

[22]  Robert McGraw,et al.  Description of Aerosol Dynamics by the Quadrature Method of Moments , 1997 .

[23]  R. Riman,et al.  Kinetics and Mechanisms of Hydrothermal Synthesis of Barium Titanate , 1996 .

[24]  Wolfgang Peukert,et al.  Combined experimental/numerical study on the precipitation of nanoparticles , 2004 .

[25]  Terry A. Ring,et al.  Fundamentals of crystallization: Kinetic effects on particle size distributions and morphology , 1991 .

[26]  Menachem Elimelech,et al.  Particle Deposition and Aggregation: Measurement, Modelling and Simulation , 1995 .

[27]  W. Peukert,et al.  Experimental Investigation into the Influence of Mixing on Nanoparticle Precipitation , 2002 .

[28]  L. A. Bromley Thermodynamic properties of strong electrolytes in aqueous solutions , 1973 .