On a stochastic representation theorem for Meyer-measurable processes
暂无分享,去创建一个
[1] On Lenglart's Theory of Meyer-sigma-fields and El Karoui's Theory of Optimal Stopping , 2018, 1810.08485.
[2] I. Karatzas,et al. Dynamic Allocation Problems in Continuous Time , 1994 .
[3] Peter Bank,et al. Modelling information flows by Meyer-$\sigma$-fields in the singular stochastic control problem of irreversible investment , 2018 .
[4] N. Karoui,et al. A stochastic representation theorem with applications to optimization and obstacle problems , 2004 .
[5] Xia Su,et al. On irreversible investment , 2006, Finance Stochastics.
[6] Giorgio Ferrari,et al. Identifying the Free Boundary of a Stochastic, Irreversible Investment Problem via the Bank-El Karoui Representation Theorem , 2014, SIAM J. Control. Optim..
[7] W. Rudin. Principles of mathematical analysis , 1964 .
[8] A non-linear Riesz respresentation in probabilistic potential theory , 2005 .
[9] H. Föllmer,et al. American Options, Multi–armed Bandits, and Optimal Consumption Plans: A Unifying View , 2003 .
[10] Peter Bank,et al. On Gittins’ index theorem in continuous time , 2007 .
[11] É. Lenglart. Tribus de meyer et theorie des processus , 1980 .
[12] Ari-Pekka Perkkiö,et al. Optional and Predictable Projections of Normal Integrands and Convex-Valued Processes , 2015, 1508.02176.
[14] J. Neveu,et al. Discrete Parameter Martingales , 1975 .
[15] J. Bismut,et al. Temps d'arrÊt optimal, théorie générale des processus et processus de Markov , 1977 .
[16] N. Karoui. Les Aspects Probabilistes Du Controle Stochastique , 1981 .
[18] Hans Föllmer,et al. A representation of excessive functions as expected suprema , 2006 .
[19] Giorgio Ferrari,et al. On an Integral Equation for the Free Boundary of Stochastic, Irreversible Investment Problems , 2012 .