Introduction to focus issue: Synchronization in large networks and continuous media-data, models, and supermodels.

The synchronization of loosely coupled chaotic systems has increasingly found applications to large networks of differential equations and to models of continuous media. These applications are at the core of the present Focus Issue. Synchronization between a system and its model, based on limited observations, gives a new perspective on data assimilation. Synchronization among different models of the same system defines a supermodel that can achieve partial consensus among models that otherwise disagree in several respects. Finally, novel methods of time series analysis permit a better description of synchronization in a system that is only observed partially and for a relatively short time. This Focus Issue discusses synchronization in extended systems or in components thereof, with particular attention to data assimilation, supermodeling, and their applications to various areas, from climate modeling to macroeconomics.

[1]  Gregory S Duane,et al.  Simulating climate with a synchronization-based supermodel. , 2017, Chaos.

[2]  N. Keenlyside,et al.  Role of atmosphere-ocean interactions in supermodeling the tropical Pacific climate. , 2017, Chaos.

[3]  Michael Ghil,et al.  Economic networks: Heterogeneity-induced vulnerability and loss of synchronization. , 2017, Chaos.

[4]  Gregory S Duane,et al.  "FORCE" learning in recurrent neural networks as data assimilation. , 2017, Chaos.

[5]  B. Kirtman,et al.  Ocean eddies and climate predictability. , 2017, Chaos.

[6]  J. Weiss,et al.  Assimilation of ocean sea-surface height observations of mesoscale eddies. , 2017, Chaos.

[7]  W. Wiegerinck,et al.  Attractor learning in synchronized chaotic systems in the presence of unresolved scales. , 2017, Chaos.

[8]  Jürgen Kurths,et al.  Insensitivity of synchronization to network structure in chaotic pendulum systems with time-delay coupling. , 2017, Chaos.

[9]  Michael Ghil,et al.  Synchronization of world economic activity. , 2017, Chaos.

[10]  Daniel Margoliash,et al.  A unifying view of synchronization for data assimilation in complex nonlinear networks. , 2017, Chaos.

[11]  Stephen G Penny,et al.  Mathematical foundations of hybrid data assimilation from a synchronization perspective. , 2017, Chaos.

[12]  X. Morice-Atkinson,et al.  Phase synchronization of baroclinic waves in a differentially heated rotating annulus experiment subject to periodic forcing with a variable duty cycle. , 2017, Chaos.

[13]  N. Frolov,et al.  Amplification through chaotic synchronization in spatially extended beam-plasma systems. , 2017, Chaos.

[14]  Dmitri Kondrashov,et al.  Data-adaptive harmonic spectra and multilayer Stuart-Landau models. , 2017, Chaos.

[15]  Jürgen Kurths,et al.  Stability of synchrony against local intermittent fluctuations in tree-like power grids. , 2017, Chaos.

[16]  Michael Ghil,et al.  Interannual Variability in the North Atlantic Ocean’s Temperature Field and Its Association with the Wind Stress Forcing , 2016 .

[17]  Michael Ghil,et al.  Economic Cycles and Their Synchronization: A Comparison of Cyclic Modes in Three European Countries , 2016 .

[18]  Witold Dzwinel,et al.  Supermodeling in Simulation of Melanoma Progression , 2016, ICCS.

[19]  Wim Wiegerinck,et al.  Dynamically combining climate models to “supermodel” the tropical Pacific , 2016 .

[20]  Silvia Maria. Alessio,et al.  Digital Signal Processing and Spectral Analysis for Scientists , 2016 .

[21]  M. Ghil,et al.  Monte Carlo Singular Spectrum Analysis (SSA) Revisited: Detecting Oscillator Clusters in Multivariate Datasets , 2015 .

[22]  Michael Ghil,et al.  Predicting Critical Transitions in ENSO models. Part II: Spatially Dependent Models , 2015 .

[23]  Michael Ghil,et al.  Data-driven non-Markovian closure models , 2014, 1411.4700.

[24]  Gregory S. Duane,et al.  Synchronicity from Synchronized Chaos , 2011, Entropy.

[25]  Michael Ghil,et al.  Oscillatory Climate Modes in the Indian Monsoon, North Atlantic, and Tropical Pacific , 2013 .

[26]  Michael Ghil,et al.  The Role of Oscillatory Modes in U.S. Business Cycles , 2012 .

[27]  A. Barnston,et al.  Skill of Real-Time Seasonal ENSO Model Predictions During 2002–11: Is Our Capability Increasing? , 2012 .

[28]  Michael Ghil,et al.  Boolean Delay equations on Networks in Economics and the Geosciences , 2011, Int. J. Bifurc. Chaos.

[29]  Michael Ghil,et al.  Multivariate singular spectrum analysis and the road to phase synchronization. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Wim Wiegerinck,et al.  A multi-model ensemble method that combines imperfect models through learning , 2010 .

[31]  Leonard A. Smith,et al.  Geophysical flows as dynamical systems: the influence of Hide's experiments , 2010 .

[32]  Michael Ghil,et al.  Oscillatory Climate Modes in the Eastern Mediterranean and Their Synchronization with the North Atlantic Oscillation , 2010 .

[33]  Yoshi Fujiwara,et al.  Large-scale structure of a nation-wide production network , 2008, 0806.4280.

[34]  Jeffrey L. Anderson,et al.  The Data Assimilation Research Testbed: A Community Facility , 2009 .

[35]  Tim N. Palmer,et al.  The Invariant Set Postulate: a new geometric framework for the foundations of quantum theory and the role played by gravity , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[36]  Gregory S Duane,et al.  Synchronization of extended systems from internal coherence. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  M. Ghil,et al.  Boolean delay equations: A simple way of looking at complex systems , 2006, nlin/0612047.

[38]  Gregory S. Duane,et al.  Automatic Parameter Estimation in a Mesoscale Model Without Ensembles , 2008 .

[39]  Juan M. Restrepo,et al.  A path integral method for data assimilation , 2008 .

[40]  S. Kravtsov 2 Empirical model reduction and the modelling hierarchy in climate dynamics and the geosciences , 2009 .

[41]  Ljupco Kocarev,et al.  Identical synchronization, with translation invariance, implies parameter estimation , 2007 .

[42]  C. Koch,et al.  How does consciousness happen? , 2007, Scientific American.

[43]  Jeffrey B. Weiss,et al.  Synchronicity in predictive modelling: a new view of data assimilation , 2006 .

[44]  Louis M. Pecora,et al.  Synchronization in Chaotic Systems, Concepts and Applications , 2006 .

[45]  D. Maraun,et al.  Epochs of phase coherence between El Niño/Southern Oscillation and Indian monsoon , 2005 .

[46]  Joseph Tribbia,et al.  Weak Atlantic–Pacific Teleconnections as Synchronized Chaos , 2004 .

[47]  S. Strogatz,et al.  Chimera states for coupled oscillators. , 2004, Physical review letters.

[48]  J. Kurths,et al.  Three types of transitions to phase synchronization in coupled chaotic oscillators. , 2003, Physical review letters.

[49]  A. Pikovsky,et al.  Synchronization: Theory and Application , 2003 .

[50]  Michael Ghil,et al.  Data Assimilation for a Coupled Ocean–Atmosphere Model. Part II: Parameter Estimation , 2008 .

[51]  Steven J Schiff,et al.  Limits to the experimental detection of nonlinear synchrony. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  Michael Ghil,et al.  ADVANCED SPECTRAL METHODS FOR CLIMATIC TIME SERIES , 2002 .

[53]  G. Eyink,et al.  Most Probable Histories for Nonlinear Dynamics: Tracking Climate Transitions , 2000 .

[54]  D. Zanette,et al.  MEASURE SYNCHRONIZATION IN COUPLED HAMILTONIAN SYSTEMS , 1999 .

[55]  Michael Ghil,et al.  Extended Kalman filtering for vortex systems. Part II: Rankine vortices and observing-system design , 1998 .

[56]  Michael Ghil,et al.  Extended Kalman filtering for vortex systems. Part 1: Methodology and point vortices , 1998 .

[57]  Gregory S. Duane,et al.  SYNCHRONIZED CHAOS IN EXTENDED SYSTEMS AND METEOROLOGICAL TELECONNECTIONS , 1997 .

[58]  Louis M. Pecora,et al.  Fundamentals of synchronization in chaotic systems, concepts, and applications. , 1997, Chaos.

[59]  Eli Tziperman,et al.  Controlling Spatiotemporal Chaos in a Realistic El Niño Prediction Model , 1997 .

[60]  Ljupco Kocarev,et al.  Synchronizing Spatiotemporal Chaos of Partial Differential Equations , 1997 .

[61]  Philippe Courtier,et al.  Unified Notation for Data Assimilation : Operational, Sequential and Variational , 1997 .

[62]  Michael Ghil,et al.  Advances in Sequential Estimation for Atmospheric and Oceanic Flows , 1997 .

[63]  D. Dee On-line Estimation of Error Covariance Parameters for Atmospheric Data Assimilation , 1995 .

[64]  Peterman,et al.  High frequency synchronization of chaos. , 1995, Physical review letters.

[65]  L. Tsimring,et al.  Generalized synchronization of chaos in directionally coupled chaotic systems. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[66]  E. Ott,et al.  Blowout bifurcations: the occurrence of riddled basins and on-off intermittency , 1994 .

[67]  Michael Ghil,et al.  Advanced data assimilation in strongly nonlinear dynamical systems , 1994 .

[68]  Eli Tziperman,et al.  El Ni�o Chaos: Overlapping of Resonances Between the Seasonal Cycle and the Pacific Ocean-Atmosphere Oscillator , 1994, Science.

[69]  Michael Ghil,et al.  El Ni�o on the Devil's Staircase: Annual Subharmonic Steps to Chaos , 1994, Science.

[70]  Roy,et al.  Experimental synchronization of chaotic lasers. , 1994, Physical review letters.

[71]  Franco Molteni,et al.  Toward a dynamical understanding of planetary-scale flow regimes. , 1993 .

[72]  Spiegel,et al.  On-off intermittency: A mechanism for bursting. , 1993, Physical review letters.

[73]  Ionel M. Navon,et al.  An Optimal Nudging Data Assimilation Scheme Using Parameter Estimation , 1992 .

[74]  M. Ghil,et al.  Data assimilation in meteorology and oceanography , 1991 .

[75]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[76]  M. Rabinovich,et al.  Stochastic synchronization of oscillation in dissipative systems , 1986 .

[77]  Stochastic synchronization of oscillations in dissipative systems , 1986 .

[78]  H. Fujisaka,et al.  Stability Theory of Synchronized Motion in Coupled-Oscillator Systems. III Mapping Model for Continuous System , 1984 .

[79]  J. Wallace,et al.  Teleconnections in the Geopotential Height Field during the Northern Hemisphere Winter , 1981 .

[80]  D. Rand,et al.  Dynamical Systems and Turbulence, Warwick 1980 , 1981 .

[81]  E. Lorenz Deterministic nonperiodic flow , 1963 .