Heterogeneous 3D integration of hidden hinge micromirror arrays consisting of two layers of monocrystalline silicon

We present a complementary metal–oxide–semiconductor (CMOS) compatible heterogeneous 3D integration process that allows the integration of two monocrystalline silicon layers on top of CMOS control electronics. With this process we demonstrate the fabrication of hidden hinge micromirror arrays from monocrystalline silicon for adaptive optics applications. The piston-type micromirror arrays have the flexures underneath the mirror plates on separate silicon layers. Arrays of 48 × 48 mirror elements with an air-gap between mirror and address electrode of 10 µm were fabricated. The mirrors were found to be drift free and showed no imprinting. A maximum electrostatic mirror displacement of 3 µm is demonstrated.

[1]  Tsu-Jae King Liu,et al.  Technologies for Cofabricating MEMS and Electronics , 2008, Proceedings of the IEEE.

[2]  Ann Witvrouw,et al.  CMOS–MEMS integration today and tomorrow , 2008 .

[3]  S. Middelhoek,et al.  Technology and applications of micromachined silicon adaptive mirrors , 1997 .

[4]  D. Castañón,et al.  Continuous-membrane surface-micromachined silicon deformable mirror , 1997 .

[5]  Larry J. Hornbeck,et al.  Deformable-Mirror Spatial Light Modulators , 1990, Optics & Photonics.

[6]  Adisorn Tuantranont,et al.  Segmented silicon-micromachined microelectromechanical deformable mirrors for adaptive optics , 2002 .

[7]  A. Gehner,et al.  Drift-Free Micromirror Arrays Made of Monocrystalline Silicon for Adaptive Optics Applications , 2012, Journal of Microelectromechanical Systems.

[8]  Victor M. Bright,et al.  Use of micro-electro-mechanical deformable mirrors to control aberrations in optical systems: theoretical and experimental results , 1997 .

[9]  Thomas G. Bifano,et al.  Fabrication of single crystalline MEMS DM using anodic wafer bonding , 2008, SPIE MOEMS-MEMS.

[10]  Martin Friedrichs,et al.  Amorphous TiAl films for micromirror arrays with stable analog deflection integrated on complementary metal oxide semiconductors , 2008 .

[11]  M. R. Douglass,et al.  Lifetime estimates and unique failure mechanisms of the Digital Micromirror Device (DMD) , 1998, 1998 IEEE International Reliability Physics Symposium Proceedings. 36th Annual (Cat. No.98CH36173).

[12]  Steven Nasiri Wafer Level Packaging of MOEMS Solves Manufacturability Challenges In Optical Cross Connect , 2000 .

[13]  Thomas G. Bifano,et al.  Adaptive imaging: MEMS deformable mirrors , 2011 .

[14]  Keren Bergman,et al.  Optical interconnection networks for high-performance computing systems , 2012, Reports on progress in physics. Physical Society.

[15]  Niclas Roxhed,et al.  High-performance infrared micro-bolometer arrays manufactured using very large scale heterogeneous integration , 2011, 16th International Conference on Optical MEMS and Nanophotonics.

[16]  Il Woong Jung,et al.  Single-Crystal-Silicon Continuous Membrane Deformable Mirror Array for Adaptive Optics in Space-Based Telescopes , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[17]  Ann Witvrouw,et al.  Characterization and strain gradient optimization of PECVD poly-SiGe layers for MEMS applications , 2006 .

[18]  R. Gutmann,et al.  Adhesive wafer bonding , 2006 .

[19]  B. van Drieenhuizen,et al.  11-Megapixel CMOS-Integrated SiGe Micromirror Arrays for High-End Applications , 2010, Journal of microelectromechanical systems.

[20]  Tsu-Jae King,et al.  Thermal budget limits of quarter-micrometer foundry CMOS for post-processing MEMS devices , 2005, IEEE Transactions on Electron Devices.

[21]  M. R. Douglass,et al.  A MEMS-based projection display , 1998, Proc. IEEE.

[22]  Michael C. Roggemann,et al.  Surface micromachined segmented mirrors for adaptive optics , 1999 .

[23]  P. Sarro,et al.  Flexible mirror micromachined in silicon. , 1995, Applied optics.

[24]  A. Gehner,et al.  Hidden-hinge micro-mirror arrays made by heterogeneous integration of two mono-crystalline silicon layers , 2011, 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems.

[25]  G. Stemme,et al.  One-Megapixel Monocrystalline-Silicon Micromirror Array on CMOS Driving Electronics Manufactured With Very Large-Scale Heterogeneous Integration , 2011, Journal of Microelectromechanical Systems.

[26]  Frank Niklaus,et al.  Wafer-Level Heterogeneous Integration for MOEMS, MEMS, and NEMS , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[27]  D.J. Dagel,et al.  Large-stroke MEMS deformable mirrors for adaptive optics , 2006, Journal of Microelectromechanical Systems.

[28]  Thomas G. Bifano,et al.  4096-element continuous face-sheet MEMS deformable mirror for high-contrast imaging , 2009 .

[29]  Thomas G. Bifano,et al.  Through-wafer interconnects for high degree of freedom MEMS deformable mirrors , 2010, MOEMS-MEMS.

[30]  Harald Schenk,et al.  Mechanical stability of spatial light modulators in microlithography , 2005, SPIE MOEMS-MEMS.

[31]  Oliver Brand,et al.  Microsensor Integration Into Systems-on-Chip , 2006, Proceedings of the IEEE.