Controlling Cerebellar Output to Treat Refractory Epilepsy

Generalized epilepsy is characterized by recurrent seizures caused by oscillatory neuronal firing throughout thalamocortical networks. Current therapeutic approaches often intervene at the level of the thalamus or cerebral cortex to ameliorate seizures. We review here the therapeutic potential of cerebellar stimulation. The cerebellum forms a prominent ascending input to the thalamus and, whereas stimulation of the foliated cerebellar cortex exerts inconsistent results, stimulation of the centrally located cerebellar nuclei (CN) reliably stops generalized seizures in experimental models. Stimulation of this area indicates that the period of stimulation with respect to the phase of the oscillations in thalamocortical networks can optimize its effect, opening up the possibility of developing on-demand deep brain stimulation (DBS) treatments.

[1]  I S Cooper,et al.  Effect of chronic stimulation of anterior cerebellum on neurological disease. , 1973, Lancet.

[2]  W. Mckinney,et al.  Cerebellar degeneration following long‐term phenytoin therapy , 1976, Neurology.

[3]  I. Soltesz,et al.  On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy , 2013, Nature Communications.

[4]  M. Kerr,et al.  The impact of epilepsy on patients' lives , 2012, Acta neurologica Scandinavica. Supplementum.

[5]  R. Davis,et al.  Cerebellar stimulation for cerebral palsy spasticity, function, and seizures. , 2000, Archives of medical research.

[6]  W. Kruse,et al.  Delayed Postnatal Loss of P/Q-Type Calcium Channels Recapitulates the Absence Epilepsy, Dyskinesia, and Ataxia Phenotypes of Genomic Cacna1A Mutations , 2011, The Journal of Neuroscience.

[7]  I. Cooper,et al.  Chronic cerebellar stimulation in epilepsy. Clinical and anatomical studies. , 1976, Archives of neurology.

[8]  W Hamish Mehaffey,et al.  Specific T-type calcium channel isoforms are associated with distinct burst phenotypes in deep cerebellar nuclear neurons. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[9]  T. Ruigrok,et al.  Collateralization of cerebellar output to functionally distinct brainstem areas. A retrograde, non-fluorescent tracing study in the rat , 2014, Front. Syst. Neurosci..

[10]  P. Kwan,et al.  Drug-resistant epilepsy. , 2011, The New England journal of medicine.

[11]  Yong-Hee Han,et al.  Cerebellar white matter changes in patients with newly diagnosed partial epilepsy of unknown etiology , 2015, Clinical Neurology and Neurosurgery.

[12]  R. Snider,et al.  Some Cerebellar Influences on Electrically‐Induced Cerebral Seizures * , 1955, Epilepsia.

[13]  D. Hemmy,et al.  The effect of cerebellar stimulation on focal seizure activity and spasticity in monkeys. , 1977, Journal of neurosurgery.

[14]  Steve S. Chung,et al.  Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy , 2010, Epilepsia.

[15]  R. Harvey,et al.  Quantitatives studies on the mammalian cerebellum , 1991, Progress in Neurobiology.

[16]  I. Sugihara,et al.  Projection of reconstructed single purkinje cell axons in relation to the cortical and nuclear aldolase C compartments of the rat cerebellum , 2009, The Journal of comparative neurology.

[17]  Thomas J. Davidson,et al.  Closed-loop optogenetic control of thalamus as a new tool to interrupt seizures after cortical injury , 2012, Nature Neuroscience.

[18]  M Sramka,et al.  Clinical experience in intraoperational determination of brain inhibitory structures and application of implanted neurostimulators in epilepsy. , 1990, Stereotactic and functional neurosurgery.

[19]  F. Bartolomei,et al.  Responders to vagus nerve stimulation (VNS) in refractory epilepsy have reduced interictal cortical synchronicity on scalp EEG , 2015, Epilepsy Research.

[20]  Tycho M. Hoogland,et al.  Strength and timing of motor responses mediated by rebound firing in the cerebellar nuclei after Purkinje cell activation , 2013, Front. Neural Circuits.

[21]  Andreea C. Bostan,et al.  Cerebellar networks with the cerebral cortex and basal ganglia , 2013, Trends in Cognitive Sciences.

[22]  Steve S. Chung,et al.  Long-term efficacy and safety of thalamic stimulation for drug-resistant partial epilepsy , 2015, Neurology.

[23]  Antonio Valentín,et al.  Deep brain stimulation of the centromedian thalamic nucleus for the treatment of generalized and frontal epilepsies , 2013, Epilepsia.

[24]  J. Tepper,et al.  Cerebellar-responsive neurons in the thalamic ventroanterior-ventrolateral complex of rats: In vivo electrophysiology , 1994, Neuroscience.

[25]  F. Mormann,et al.  Seizure prediction for therapeutic devices: A review , 2016, Journal of Neuroscience Methods.

[26]  Y. Shinoda,et al.  Synaptic organization of the cerebello-thalamo-cerebral pathway in the cat. I. Projection of individual cerebellar nuclei to single pyramidal tract neurons in areas 4 and 6 , 1985, Neuroscience Research.

[27]  T. Babb,et al.  Fastigiobulbar and dentatothalamic influences on hippocampal cobalt epilepsy in the cat. , 1974, Electroencephalography and clinical neurophysiology.

[28]  Rob C. G. van de Ven,et al.  High cortical spreading depression susceptibility and migraine‐associated symptoms in Cav2.1 S218L mice , 2010, Annals of neurology.

[29]  T. Knöpfel,et al.  Diversity of Neuronal Elements and Circuitry in the Cerebellar Nuclei , 2012, The Cerebellum.

[30]  Michael S. Okun,et al.  The temporal pattern of stimulation may be important to the mechanism of deep brain stimulation , 2013, Experimental Neurology.

[31]  D. Jaeger,et al.  Responses to tactile stimulation in deep cerebellar nucleus neurons result from recurrent activation in multiple pathways. , 2008, Journal of neurophysiology.

[32]  Richard Apps,et al.  Cerebellar cortical organization: a one-map hypothesis , 2009, Nature Reviews Neuroscience.

[33]  Patrick T. Hickey,et al.  Postmortem diffusion MRI of the human brainstem and thalamus for deep brain stimulator electrode localization , 2015, Human brain mapping.

[34]  E. Chang,et al.  Vagus nerve stimulation for epilepsy : a meta analysis of efficacy and predictors of response A review , 2011 .

[35]  M Velasco,et al.  Electrical Stimulation of the Centromedian Thalamic Nucleus in the Treatment of Convulsive Seizures: A Preliminary Report , 1987, Epilepsia.

[36]  Wei Liao,et al.  Preferential networks of the mediodorsal nucleus and centromedian–parafascicular complex of the thalamus—A DTI tractography study , 2012, Human brain mapping.

[37]  S. Berkovic,et al.  The cerebellar seizures of Hughlings Jackson , 1999, Neurology.

[38]  A. Machado,et al.  Chronic Deep Cerebellar Stimulation Promotes Long-Term Potentiation, Microstructural Plasticity, and Reorganization of Perilesional Cortical Representation in a Rodent Model , 2014, The Journal of Neuroscience.

[39]  Wouter A. Serdijn,et al.  An implementation of a wavelet-based seizure detection filter suitable for realtime closed-loop epileptic seizure suppression , 2014, 2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings.

[40]  J. H. Cross,et al.  ILAE Official Report: A practical clinical definition of epilepsy , 2014, Epilepsia.

[41]  T. Bacia,et al.  [Effect of cerebellar cortical electrostimulation on the frequency of epileptic seizures in severe forms of epilepsy]. , 1981, Neurologia i neurochirurgia polska.

[42]  F. Gilliam,et al.  Adverse effects of antiepileptic drugs , 2012, The Lancet Neurology.

[43]  Chris I De Zeeuw,et al.  Differential olivo-cerebellar cortical control of rebound activity in the cerebellar nuclei , 2010, Proceedings of the National Academy of Sciences.

[44]  M. Koubeissi,et al.  Cerebellar and thalamic stimulation treatment for epilepsy. , 2007, Acta neurochirurgica. Supplement.

[45]  S. Boop,et al.  Cerebellar seizures. , 2013, Journal of neurosurgery. Pediatrics.

[46]  I. Savic,et al.  Localized cerebellar reductions in benzodiazepine receptor density in human partial epilepsy. , 1996, Archives of neurology.

[47]  M. Mark,et al.  Postnatal Loss of P/Q-Type Channels Confined to Rhombic-Lip-Derived Neurons Alters Synaptic Transmission at the Parallel Fiber to Purkinje Cell Synapse and Replicates Genomic Cacna1a Mutation Phenotype of Ataxia and Seizures in Mice , 2013, The Journal of Neuroscience.

[48]  M. Thom,et al.  Patterns of cerebellar atrophy in patients with chronic epilepsy: a quantitative neuropathological study , 2000, Epilepsy Research.

[49]  J. Meinzen-Derr,et al.  Selective elimination of cerebellar output in the genetically dystonic rat , 1995, Brain Research.

[50]  T. W. May,et al.  Cerebellar atrophy and prognosis after temporal lobe resection. , 1997, Journal of neurology, neurosurgery, and psychiatry.

[51]  M. Galanda,et al.  Some observations in treatment stimulation of epilepsy. , 1976, Acta neurochirurgica.

[52]  U. Stephani,et al.  A Computational Study of Stimulus Driven Epileptic Seizure Abatement , 2014, PloS one.

[53]  J. Voogd,et al.  Topography of cerebellar nuclear projections to the brain stem in the rat. , 2000, Progress in brain research.

[54]  G. Buzsáki,et al.  Cerebellar neuronal activity correlates with spike and wave EEG patterns in the rat , 1993, Epilepsy Research.

[55]  M Velasco,et al.  Effect of Chronic Electrical Stimulation of the Centromedian Thalamic Nuclei on Various Intractable Seizure Patterns: I. Clinical Seizures and Paroxysmal EEG Activity , 1993, Epilepsia.

[56]  J. V. Van Buren,et al.  Preliminary evaluation of cerebellar stimulation by double-blind stimulation and biological criteria in the treatment of epilepsy. , 1978, Journal of neurosurgery.

[57]  Stéphane Charpier,et al.  Intracellular activity of cortical and thalamic neurones during high‐voltage rhythmic spike discharge in Long‐Evans rats in vivo , 2006, The Journal of physiology.

[58]  R. Dow,et al.  The influence of the cerebellum on experimental epilepsy. , 1962, Electroencephalography and clinical neurophysiology.

[59]  Fernando Calamante,et al.  Contralateral cerebello-thalamo-cortical pathways with prominent involvement of associative areas in humans in vivo , 2014, Brain Structure and Function.

[60]  S. Corkin,et al.  H.M.'s contributions to neuroscience: A review and autopsy studies , 2014, Hippocampus.

[61]  S. Koekkoek,et al.  Spatiotemporal firing patterns in the cerebellum , 2011, Nature Reviews Neuroscience.

[62]  Hauke Bartsch,et al.  Postmortem examination of patient H.M.’s brain based on histological sectioning and digital 3D reconstruction , 2014, Nature Communications.

[63]  J. Kooloos,et al.  Combining fiber dissection, plastination, and tractography for neuroanatomical education: Revealing the cerebellar nuclei and their white matter connections , 2014, Anatomical sciences education.

[64]  M. Morrell Responsive cortical stimulation for the treatment of medically intractable partial epilepsy , 2011, Neurology.

[65]  T. Jiang,et al.  Cerebellum Abnormalities in Idiopathic Generalized Epilepsy with Generalized Tonic-Clonic Seizures Revealed by Diffusion Tensor Imaging , 2010, PloS one.

[66]  Udaya Seneviratne,et al.  The electroencephalogram of idiopathic generalized epilepsy , 2012, Epilepsia.

[67]  Michael Seidenberg,et al.  Cerebellar atrophy in temporal lobe epilepsy , 2005, Epilepsy & Behavior.

[68]  K. Till VIRUSES AND TUMOURS. , 1964, Lancet.

[69]  Y. Ueda,et al.  Effect of Unilateral Dentate Nucleus Lesions on Amygdaloid Kindling in Rats , 1992, Epilepsia.

[70]  N. Baumann,et al.  The adult form of Niemann-Pick disease type C. , 2006, Brain : a journal of neurology.

[71]  G. Tamburini,et al.  VNS induced desynchronization in gamma bands correlates with positive clinical outcome in temporal lobe pharmacoresistant epilepsy , 2013, Neuroscience Letters.

[72]  G. Deuschl,et al.  Physiological and anatomical decomposition of subthalamic neurostimulation effects in essential tremor. , 2014, Brain : a journal of neurology.

[73]  Tianyi Mao,et al.  A comprehensive thalamocortical projection map at the mesoscopic level , 2014, Nature Neuroscience.

[74]  J. Serratosa,et al.  MRI Volumetry and Proton MR Spectroscopy of the Brain in Lafora Disease , 2006, Epilepsia.

[75]  M. Witter,et al.  The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness , 2002, Brain Research Reviews.

[76]  L. F. Levy,et al.  Chronic Cerebellar Stimulation in the Treatment of Epilepsy , 1979, Epilepsia.

[77]  Ciska Heida,et al.  A novel lead design enables selective deep brain stimulation of neural populations in the subthalamic region , 2015, Journal of neural engineering.

[78]  Abigail L. Person,et al.  Purkinje neuron synchrony elicits time-locked spiking in the cerebellar nuclei , 2011, Nature.

[79]  R. Bickford,et al.  Effects of Acute and Chronic Paleocerebellar Stimulation on Experimental Models of Epilepsy in the Cat: Studies with Enflurane, Pentylenetetrazol, Penicillin, and Chloralose , 1975, Epilepsia.

[80]  D. McCormick,et al.  Cellular mechanisms of a synchronized oscillation in the thalamus. , 1993, Science.

[81]  Vincenzo Crunelli,et al.  Enhanced tonic GABAA inhibition in typical absence epilepsy , 2009, Nature Medicine.

[82]  S. Sherman,et al.  The Function of Metabotropic Glutamate Receptors in Thalamus and Cortex , 2014, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[83]  Martin McKee,et al.  Environmental Profile of a Community's Health (EPOCH): An Instrument to Measure Environmental Determinants of Cardiovascular Health in Five Countries , 2010, PloS one.

[84]  F. L. D. Silva,et al.  Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network , 2004, Neuroscience.

[85]  Hal Blumenfeld,et al.  The role of subcortical structures in human epilepsy , 2002, Epilepsy & Behavior.

[86]  E. Reinmaa,et al.  Gene Expression Alterations in the Cerebellum and Granule Neurons of Cstb−/− Mouse Are Associated with Early Synaptic Changes and Inflammation , 2014, PloS one.

[87]  R. Heath,et al.  Ascending projections of the cerebellar fastigial nucleus to the hippocampus, amygdala, and other temporal lobe sites: evoked potential and histological studies in monkeys and cats. , 1974, Experimental neurology.

[88]  Miron Šramka,et al.  Electrophysiological effects and clinical results of direct brain stimulation for intractable epilepsy , 2004, Clinical Neurology and Neurosurgery.

[89]  R. Dow,et al.  Microelectrode recording of cerebellar and cerebral unit activity during convulsive afterdischarge. , 1962, Experimental neurology.

[90]  Ana Luisa Velasco,et al.  Electrical Stimulation for Epilepsy: Stimulation of Hippocampal Foci , 2002, Stereotactic and Functional Neurosurgery.

[91]  Adam W Hantman,et al.  Convergence of pontine and proprioceptive streams onto multimodal cerebellar granule cells , 2013, eLife.

[92]  H. Jörntell,et al.  In Vivo Analysis of Inhibitory Synaptic Inputs and Rebounds in Deep Cerebellar Nuclear Neurons , 2011, PloS one.

[93]  M Velasco,et al.  Deep brain stimulation for treatment of the epilepsies: the centromedian thalamic target. , 2007, Acta neurochirurgica. Supplement.

[94]  D. McCormick,et al.  Mechanisms of oscillatory activity in guinea‐pig nucleus reticularis thalami in vitro: a mammalian pacemaker. , 1993, The Journal of physiology.

[95]  D. Jaeger Mini-Review: Synaptic Integration in the Cerebellar Nuclei—Perspectives From Dynamic Clamp and Computer Simulation Studies , 2011, The Cerebellum.

[96]  G. Cascino,et al.  Resective epilepsy surgery for drug-resistant focal epilepsy: a review. , 2015, JAMA.

[97]  Thomas Foltynie,et al.  Deep brain stimulation for movement disorders: update on recent discoveries and outlook on future developments , 2015, Journal of Neurology.

[98]  I. Soltesz,et al.  Cerebellar Directed Optogenetic Intervention Inhibits Spontaneous Hippocampal Seizures in a Mouse Model of Temporal Lobe Epilepsy , 2014, eNeuro.

[99]  S. Wadhwa,et al.  Developing dentate nucleus in man: a qualitative and quantitative study , 2004, Experimental Brain Research.

[100]  Zhanmin Lin,et al.  Cerebellar modules operate at different frequencies , 2014, eLife.

[101]  M. Uno,et al.  The mode of cerebello-thalamic relay transmission investigated with intracellular recording from cells of the ventrolateral nucleus of cat's thalamus , 2004, Experimental Brain Research.

[102]  Jeanne T Paz,et al.  Microcircuits and their interactions in epilepsy: is the focus out of focus? , 2015, Nature Neuroscience.

[103]  R. Fisher,et al.  Electrical brain stimulation for epilepsy , 2014, Nature Reviews Neurology.

[104]  D. Mclellan,et al.  A double-blind trial of chronic cerebellar stimulation in twelve patients with severe epilepsy. , 1984, Journal of neurology, neurosurgery, and psychiatry.

[105]  R. Davis,et al.  Cerebellar stimulation for seizure control: 17-year study. , 1992, Stereotactic and functional neurosurgery.

[106]  I. Raman,et al.  Integration of Purkinje Cell Inhibition by Cerebellar Nucleo-Olivary Neurons , 2015, The Journal of Neuroscience.

[107]  Adam Kohn,et al.  Questioning the role of rebound firing in the cerebellum , 2008, Nature Neuroscience.

[108]  M Velasco,et al.  Electrical Stimulation of the Centromedian Thalamic Nucleus in Control of Seizures: Long‐Term Studies , 1995, Epilepsia.

[109]  Poramate Manoonpong,et al.  Neural control and adaptive neural forward models for insect-like, energy-efficient, and adaptable locomotion of walking machines , 2013, Front. Neural Circuits.

[110]  Nikolaus R. McFarland,et al.  The Place of the Thalamus in Frontal Cortical-Basal Ganglia Circuits , 2001, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[111]  M. Barrot,et al.  Clusters of cerebellar Purkinje cells control their afferent climbing fiber discharge , 2013, Proceedings of the National Academy of Sciences.

[112]  Neil Davey,et al.  Cerebellar output controls generalized spike‐and‐wave discharge occurrence , 2015, Annals of neurology.

[113]  M. Belluscio,et al.  Closed-Loop Control of Epilepsy by Transcranial Electrical Stimulation , 2012, Science.

[114]  J. Voogd The human cerebellum , 2003, Journal of Chemical Neuroanatomy.

[115]  C. D. Vos,et al.  Predicting success of vagus nerve stimulation (VNS) from interictal EEG , 2011, Seizure.

[116]  A. Lozano,et al.  Probing and Regulating Dysfunctional Circuits Using Deep Brain Stimulation , 2013, Neuron.

[117]  Daniela Popa,et al.  Cerebellum involvement in cortical sensorimotor circuits for the control of voluntary movements , 2014, Nature Neuroscience.

[118]  Egidio D'Angelo,et al.  Silencing the majority of cerebellar granule cells uncovers their essential role in motor learning and consolidation. , 2013, Cell reports.

[119]  M. Horne,et al.  Ramification and termination of single axons in the cerebellothalamic pathway of the rat , 1996, The Journal of comparative neurology.

[120]  S. Ha,et al.  Brain morphology in juvenile myoclonic epilepsy and absence seizures , 2016, Acta neurologica Scandinavica.

[121]  Ana Luisa Velasco,et al.  Double‐blind, Randomized Controlled Pilot Study of Bilateral Cerebellar Stimulation for Treatment of Intractable Motor Seizures , 2005, Epilepsia.

[122]  K. Amunts,et al.  Cytoarchitectonic mapping of the human brain cerebellar nuclei in stereotaxic space and delineation of their co-activation patterns , 2015, Front. Neuroanat..

[123]  John W. Miller,et al.  Role of the Fastigial Nucleus in Generalized Seizures as Demonstrated by GABA Agonist Microinjections , 1993, Epilepsia.

[124]  Philippe Ryvlin,et al.  Epilepsy: new advances , 2015, The Lancet.

[125]  G. Moruzzi Effects at different frequencies of cerebellar stimulation upon postural tonus and myotatic reflexes. , 1950, Electroencephalography and clinical neurophysiology.

[126]  S. Cash,et al.  Long-term treatment with responsive brain stimulation in adults with refractory partial seizures , 2015, Neurology.