What Learning Systems do Intelligent Agents Need? Complementary Learning Systems Theory Updated

[1]  H. Eichenbaum,et al.  Representation of memories in the cortical–hippocampal system: Results from the application of population similarity analyses , 2016, Neurobiology of Learning and Memory.

[2]  Daan Wierstra,et al.  Meta-Learning with Memory-Augmented Neural Networks , 2016, ICML.

[3]  James L. McClelland,et al.  Bayesian analysis of simulation-based models , 2016 .

[4]  Caswell Barry,et al.  Coordinated grid and place cell replay during rest , 2016, Nature Neuroscience.

[5]  James J. Knierim,et al.  Tracking the flow of hippocampal computation: Pattern separation, pattern completion, and attractor dynamics , 2016, Neurobiology of Learning and Memory.

[6]  ST Johnston,et al.  Paradox of pattern separation and adult neurogenesis: A dual role for new neurons balancing memory resolution and robustness , 2016, Neurobiology of Learning and Memory.

[7]  J. DiCarlo,et al.  Using goal-driven deep learning models to understand sensory cortex , 2016, Nature Neuroscience.

[8]  Rishidev Chaudhuri,et al.  Computational principles of memory , 2016, Nature Neuroscience.

[9]  Tom Schaul,et al.  Prioritized Experience Replay , 2015, ICLR.

[10]  Bartunov Sergey,et al.  Meta-Learning with Memory-Augmented Neural Networks , 2016 .

[11]  Christian F. Doeller,et al.  Memory hierarchies map onto the hippocampal long axis in humans , 2015, Nature Neuroscience.

[12]  David J. Foster,et al.  Memory and Space: Towards an Understanding of the Cognitive Map , 2015, The Journal of Neuroscience.

[13]  Li Lu,et al.  Topography of Place Maps along the CA3-to-CA2 Axis of the Hippocampus , 2015, Neuron.

[14]  James J. Knierim,et al.  Neural Population Evidence of Functional Heterogeneity along the CA3 Transverse Axis: Pattern Completion versus Pattern Separation , 2015, Neuron.

[15]  James L. McClelland,et al.  You shall know an object by the company it keeps: An investigation of semantic representations derived from object co-occurrence in visual scenes , 2015, Neuropsychologia.

[16]  Margaret L. Schlichting,et al.  Learning-related representational changes reveal dissociable integration and separation signatures in the hippocampus and prefrontal cortex , 2015, Nature Communications.

[17]  Arne D. Ekstrom,et al.  Specific responses of human hippocampal neurons are associated with better memory , 2015, Proceedings of the National Academy of Sciences.

[18]  D. Hassabis,et al.  Hippocampal place cells construct reward related sequences through unexplored space , 2015, eLife.

[19]  Andrew M. Wikenheiser,et al.  Decoding the cognitive map: ensemble hippocampal sequences and decision making , 2015, Current Opinion in Neurobiology.

[20]  Matthew H. Davis,et al.  From specific examples to general knowledge in language learning , 2015, Cognitive Psychology.

[21]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[22]  James L. McClelland,et al.  Scholarship@Western Scholarship@Western , 2022 .

[23]  P. Dayan,et al.  Memory, modelling and Marr: a commentary on Marr (1971) ‘Simple memory: a theory of archicortex’ , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[24]  Jason Weston,et al.  End-To-End Memory Networks , 2015, NIPS.

[25]  Christian F. Doeller,et al.  Insight Reconfigures Hippocampal-Prefrontal Memories , 2015, Current Biology.

[26]  Shane Legg,et al.  Human-level control through deep reinforcement learning , 2015, Nature.

[27]  Andrew M. Wikenheiser,et al.  Hippocampal theta sequences reflect current goals , 2015, Nature Neuroscience.

[28]  Jason Weston,et al.  Memory Networks , 2014, ICLR.

[29]  Chenglin Miao,et al.  Place cells in the hippocampus: Eleven maps for eleven rooms , 2014, Proceedings of the National Academy of Sciences.

[30]  Avi Karni,et al.  Neocortical catastrophic interference in healthy and amnesic adults: A paradoxical matter of time , 2014, Hippocampus.

[31]  Nikolaus Kriegeskorte,et al.  Deep Supervised, but Not Unsupervised, Models May Explain IT Cortical Representation , 2014, PLoS Comput. Biol..

[32]  H. Eichenbaum Time cells in the hippocampus: a new dimension for mapping memories , 2014, Nature Reviews Neuroscience.

[33]  E. Lein,et al.  Functional organization of the hippocampal longitudinal axis , 2014, Nature Reviews Neuroscience.

[34]  D. Dupret,et al.  Dopaminergic neurons promote hippocampal reactivation and spatial memory persistence , 2014, Nature Neuroscience.

[35]  Sharon L. Thompson-Schill,et al.  Fast mapping rapidly integrates information into existing memory networks. , 2014, Journal of experimental psychology. General.

[36]  H. Eichenbaum,et al.  Can We Reconcile the Declarative Memory and Spatial Navigation Views on Hippocampal Function? , 2014, Neuron.

[37]  David E Warren,et al.  Not so fast: Hippocampal amnesia slows word learning despite successful fast mapping , 2014, Hippocampus.

[38]  Barbara Landau,et al.  The Necessity of the Medial Temporal Lobe for Statistical Learning , 2014, Journal of Cognitive Neuroscience.

[39]  James L. McClelland,et al.  Interactive Activation and Mutual Constraint Satisfaction in Perception and Cognition , 2014, Cogn. Sci..

[40]  Michael D. Howard,et al.  Complementary Learning Systems , 2014, Cogn. Sci..

[41]  Blake S. Porter,et al.  Hippocampal Representation of Related and Opposing Memories Develop within Distinct, Hierarchically Organized Neural Schemas , 2014, Neuron.

[42]  Richard N. Henson,et al.  No evidence that ‘fast-mapping’ benefits novel learning in healthy Older adults , 2014, Neuropsychologia.

[43]  Adam Santoro,et al.  Patterns across multiple memories are identified over time , 2014, Nature Neuroscience.

[44]  Ha Hong,et al.  Performance-optimized hierarchical models predict neural responses in higher visual cortex , 2014, Proceedings of the National Academy of Sciences.

[45]  David J Foster,et al.  Hippocampal Replay Captures the Unique Topological Structure of a Novel Environment , 2014, The Journal of Neuroscience.

[46]  Paul F. M. J. Verschure,et al.  A Signature of Attractor Dynamics in the CA3 Region of the Hippocampus , 2014, PLoS Comput. Biol..

[47]  L. Tyler,et al.  Object-Specific Semantic Coding in Human Perirhinal Cortex , 2014, The Journal of Neuroscience.

[48]  James J. Knierim,et al.  CA3 Retrieves Coherent Representations from Degraded Input: Direct Evidence for CA3 Pattern Completion and Dentate Gyrus Pattern Separation , 2014, Neuron.

[49]  G. Tononi,et al.  Sleep and the Price of Plasticity: From Synaptic and Cellular Homeostasis to Memory Consolidation and Integration , 2014, Neuron.

[50]  Surya Ganguli,et al.  Exact solutions to the nonlinear dynamics of learning in deep linear neural networks , 2013, ICLR.

[51]  Ramona O. Hopkins,et al.  Comparison of explicit and incidental learning strategies in memory-impaired patients , 2013, Proceedings of the National Academy of Sciences.

[52]  James L. McClelland,et al.  Why Bilateral Damage Is Worse than Unilateral Damage to the Brain , 2013, Journal of Cognitive Neuroscience.

[53]  James L. McClelland,et al.  Context, cortex, and associations: a connectionist developmental approach to verbal analogies , 2013, Front. Psychol..

[54]  N. Turk-Browne,et al.  Mechanisms for widespread hippocampal involvement in cognition. , 2013, Journal of experimental psychology. General.

[55]  H. Eichenbaum,et al.  Distinct Hippocampal Time Cell Sequences Represent Odor Memories in Immobilized Rats , 2013, The Journal of Neuroscience.

[56]  James L. McClelland Incorporating rapid neocortical learning of new schema-consistent information into complementary learning systems theory. , 2013, Journal of experimental psychology. General.

[57]  James L. McClelland Integrating probabilistic models of perception and interactive neural networks: a historical and tutorial review , 2013, Front. Psychol..

[58]  Randall C. O'Reilly,et al.  Theta Coordinated Error-Driven Learning in the Hippocampus , 2013, PLoS Comput. Biol..

[59]  Hallvard Røe Evensmoen,et al.  Long-axis specialization of the human hippocampus , 2013, Trends in Cognitive Sciences.

[60]  Brad E. Pfeiffer,et al.  Hippocampal place cell sequences depict future paths to remembered goals , 2013, Nature.

[61]  Valerie A. Carr,et al.  Global Similarity and Pattern Separation in the Human Medial Temporal Lobe Predict Subsequent Memory , 2013, The Journal of Neuroscience.

[62]  G. Buzsáki,et al.  Memory, navigation and theta rhythm in the hippocampal-entorhinal system , 2013, Nature Neuroscience.

[63]  Pascal Vincent,et al.  Representation Learning: A Review and New Perspectives , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[64]  Surya Ganguli,et al.  Learning hierarchical categories in deep neural networks , 2013, CogSci.

[65]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[66]  Georgios A. Keliris,et al.  Introduction to Research Topic – Binocular Rivalry: A Gateway to Studying Consciousness , 2012, Front. Hum. Neurosci..

[67]  C. Ranganath,et al.  Two cortical systems for memory-guided behaviour , 2012, Nature Reviews Neuroscience.

[68]  Daniel Bendor,et al.  Biasing the content of hippocampal replay during sleep , 2012, Nature Neuroscience.

[69]  James J. DiCarlo,et al.  Balanced Increases in Selectivity and Tolerance Produce Constant Sparseness along the Ventral Visual Stream , 2012, The Journal of Neuroscience.

[70]  Dagmar Zeithamova,et al.  Hippocampal and Ventral Medial Prefrontal Activation during Retrieval-Mediated Learning Supports Novel Inference , 2012, Neuron.

[71]  James L. McClelland,et al.  Generalization Through the Recurrent Interaction of Episodic Memories , 2012, Psychological review.

[72]  Marius Usher,et al.  Using Time-Varying Evidence to Test Models of Decision Dynamics: Bounded Diffusion vs. the Leaky Competing Accumulator Model , 2012, Front. Neurosci..

[73]  Dharshan Kumaran,et al.  What representations and computations underpin the contribution of the hippocampus to generalization and inference? , 2012, Front. Hum. Neurosci..

[74]  Margaret L. Schlichting,et al.  The hippocampus and inferential reasoning: building memories to navigate future decisions , 2012, Front. Hum. Neurosci..

[75]  K. Deisseroth,et al.  Optogenetic stimulation of a hippocampal engram activates fear memory recall , 2012, Nature.

[76]  Nikolaus Weiskopf,et al.  Decoding Representations of Scenes in the Medial Temporal Lobes , 2011, Hippocampus.

[77]  A. Treves,et al.  Theta-paced flickering between place-cell maps in the hippocampus , 2011, Nature.

[78]  C. Stark,et al.  Pattern separation in the hippocampus , 2011, Trends in Neurosciences.

[79]  Emrah Duzel,et al.  A neoHebbian framework for episodic memory; role of dopamine-dependent late LTP , 2011, Trends in Neurosciences.

[80]  Dorothy Tse,et al.  Schema-Dependent Gene Activation and Memory Encoding in Neocortex , 2011, Science.

[81]  James L. McClelland,et al.  A PDP model of the simultaneous perception of multiple objects , 2011, Connect. Sci..

[82]  Marius Usher,et al.  Testing Multi-Alternative Decision Models with Non-Stationary Evidence , 2011, Front. Neurosci..

[83]  James L. McClelland,et al.  Dynamic Integration of Reward and Stimulus Information in Perceptual Decision-Making , 2011, PloS one.

[84]  Margaret F. Carr,et al.  Hippocampal replay in the awake state: a potential substrate for memory consolidation and retrieval , 2011, Nature Neuroscience.

[85]  Morris Moscovitch,et al.  Rapid neocortical acquisition of long-term arbitrary associations independent of the hippocampus , 2011, Proceedings of the National Academy of Sciences.

[86]  James L. McClelland,et al.  Are there mental lexicons? The role of semantics in lexical decision , 2010, Brain Research.

[87]  Dagmar Zeithamova,et al.  Flexible Memories: Differential Roles for Medial Temporal Lobe and Prefrontal Cortex in Cross-Episode Binding , 2010, The Journal of Neuroscience.

[88]  James L. McClelland Memory as a Constructive Process , 2010 .

[89]  G. Winocur,et al.  Memory formation and long-term retention in humans and animals: Convergence towards a transformation account of hippocampal–neocortical interactions , 2010, Neuropsychologia.

[90]  J. O’Neill,et al.  Play it again: reactivation of waking experience and memory , 2010, Trends in Neurosciences.

[91]  Matthijs A. A. van der Meer,et al.  Hippocampal Replay Is Not a Simple Function of Experience , 2010, Neuron.

[92]  R. Stickgold,et al.  Overnight alchemy: sleep-dependent memory evolution , 2010, Nature Reviews Neuroscience.

[93]  James L. McClelland,et al.  Integration of Sensory and Reward Information during Perceptual Decision-Making in Lateral Intraparietal Cortex (LIP) of the Macaque Monkey , 2010, PloS one.

[94]  Bruce L. McNaughton,et al.  Cortical hierarchies, sleep, and the extraction of knowledge from memory , 2010, Artif. Intell..

[95]  M. Wilson,et al.  Disruption of ripple‐associated hippocampal activity during rest impairs spatial learning in the rat , 2009, Hippocampus.

[96]  R. Morris,et al.  Making memories last: the synaptic tagging and capture hypothesis , 2010, Nature Reviews Neuroscience.

[97]  G. Buzsáki,et al.  Selective suppression of hippocampal ripples impairs spatial memory , 2009, Nature Neuroscience.

[98]  H. Eichenbaum,et al.  Robust Conjunctive Item–Place Coding by Hippocampal Neurons Parallels Learning What Happens Where , 2009, The Journal of Neuroscience.

[99]  B. McNaughton,et al.  Hippocampus Leads Ventral Striatum in Replay of Place-Reward Information , 2009, PLoS biology.

[100]  Susumu Tonegawa,et al.  Hippocampal CA3 Output Is Crucial for Ripple-Associated Reactivation and Consolidation of Memory , 2009, Neuron.

[101]  Omar J. Ahmed,et al.  The hippocampal rate code: anatomy, physiology and theory , 2009, Trends in Neurosciences.

[102]  Natalie L. M. Cappaert,et al.  The anatomy of memory: an interactive overview of the parahippocampal–hippocampal network , 2009, Nature Reviews Neuroscience.

[103]  S. Sara The locus coeruleus and noradrenergic modulation of cognition , 2009, Nature Reviews Neuroscience.

[104]  D. Tolhurst,et al.  The Sparseness of Neuronal Responses in Ferret Primary Visual Cortex , 2009, The Journal of Neuroscience.

[105]  James L. McClelland Is a Machine Realization of Truly Human-Like Intelligence Achievable? , 2009, Cognitive Computation.

[106]  D. Kumaran,et al.  Novelty signals: a window into hippocampal information processing , 2009, Trends in Cognitive Sciences.

[107]  H. Barlow,et al.  Single Units and Sensation: A Neuron Doctrine for Perceptual Psychology? , 1972, Perception.

[108]  Keiji Tanaka,et al.  Matching Categorical Object Representations in Inferior Temporal Cortex of Man and Monkey , 2008, Neuron.

[109]  D. Shohamy,et al.  Integrating Memories in the Human Brain: Hippocampal-Midbrain Encoding of Overlapping Events , 2008, Neuron.

[110]  Nikolaus Kriegeskorte,et al.  Representational Similarity Analysis – Connecting the Branches of Systems Neuroscience , 2008, Frontiers in systems neuroscience.

[111]  Lori L. Holt,et al.  Effects of Attention on the Strength of Lexical Influences on Speech Perception: Behavioral Experiments and Computational Mechanisms , 2008, Cogn. Sci..

[112]  James L. McClelland,et al.  A single-system account of semantic and lexical deficits in five semantic dementia patients , 2008, Cognitive neuropsychology.

[113]  C. Koch,et al.  Sparse but not ‘Grandmother-cell’ coding in the medial temporal lobe , 2008, Trends in Cognitive Sciences.

[114]  R. Kempter,et al.  Sparseness constrains the prolongation of memory lifetime via synaptic metaplasticity. , 2008, Cerebral cortex.

[115]  Peter Dayan,et al.  Hippocampal Contributions to Control: The Third Way , 2007, NIPS.

[116]  Gary Lupyan,et al.  Language is not Just for Talking , 2007, Psychological science.

[117]  Adam Johnson,et al.  Neural Ensembles in CA3 Transiently Encode Paths Forward of the Animal at a Decision Point , 2007, The Journal of Neuroscience.

[118]  James L. McClelland,et al.  Unsupervised learning of vowel categories from infant-directed speech , 2007, Proceedings of the National Academy of Sciences.

[119]  M. Wilson,et al.  Dentate Gyrus NMDA Receptors Mediate Rapid Pattern Separation in the Hippocampal Network , 2007, Science.

[120]  D. Hassabis,et al.  Deconstructing episodic memory with construction , 2007, Trends in Cognitive Sciences.

[121]  Keiji Tanaka,et al.  Object category structure in response patterns of neuronal population in monkey inferior temporal cortex. , 2007, Journal of neurophysiology.

[122]  D. Schacter,et al.  The cognitive neuroscience of constructive memory: remembering the past and imagining the future , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[123]  Jessica D. Payne,et al.  Human relational memory requires time and sleep , 2007, Proceedings of the National Academy of Sciences.

[124]  James L. McClelland,et al.  Using domain-general principles to explain children's causal reasoning abilities. , 2007, Developmental science.

[125]  Dorothy Tse,et al.  References and Notes Supporting Online Material Materials and Methods Figs. S1 to S5 Tables S1 to S3 Electron Impact (ei) Mass Spectra Chemical Ionization (ci) Mass Spectra References Schemas and Memory Consolidation Research Articles Research Articles Research Articles Research Articles , 2022 .

[126]  Ellen M. Migo,et al.  Associative memory and the medial temporal lobes , 2007, Trends in Cognitive Sciences.

[127]  M. Moser,et al.  Pattern Separation in the Dentate Gyrus and CA3 of the Hippocampus , 2007, Science.

[128]  D. Hassabis,et al.  Patients with hippocampal amnesia cannot imagine new experiences , 2007, Proceedings of the National Academy of Sciences.

[129]  M. Gaskell,et al.  Sleep-Associated Changes in the Mental Representation of Spoken Words , 2007, Psychological science.

[130]  M. Wilson,et al.  Coordinated memory replay in the visual cortex and hippocampus during sleep , 2007, Nature Neuroscience.

[131]  L. Davachi Item, context and relational episodic encoding in humans , 2006, Current Opinion in Neurobiology.

[132]  J. Knierim,et al.  Hippocampal place cells: Parallel input streams, subregional processing, and implications for episodic memory , 2006, Hippocampus.

[133]  Neil Burgess,et al.  Computational models of the spatial and mnemonic functions of the hippocampus , 2006 .

[134]  Adler J. Perotte,et al.  Methods for reducing interference in the Complementary Learning Systems model: Oscillating inhibition and autonomous memory rehearsal , 2005, Neural Networks.

[135]  G. Winocur,et al.  Functional neuroanatomy of remote episodic, semantic and spatial memory: a unified account based on multiple trace theory , 2005, Journal of anatomy.

[136]  C. Koch,et al.  Invariant visual representation by single neurons in the human brain , 2005, Nature.

[137]  J. Lisman,et al.  The Hippocampal-VTA Loop: Controlling the Entry of Information into Long-Term Memory , 2005, Neuron.

[138]  Neil Burgess,et al.  Attractor Dynamics in the Hippocampal Representation of the Local Environment , 2005, Science.

[139]  Mark R. Bower,et al.  Sequential-Context-Dependent Hippocampal Activity Is Not Necessary to Learn Sequences with Repeated Elements , 2005, The Journal of Neuroscience.

[140]  P. Frankland,et al.  The organization of recent and remote memories , 2005, Nature Reviews Neuroscience.

[141]  Marc W Howard,et al.  The temporal context model in spatial navigation and relational learning: toward a common explanation of medial temporal lobe function across domains. , 2005, Psychological review.

[142]  B. McNaughton,et al.  Hippocampal sharp wave bursts coincide with neocortical "up-state" transitions. , 2004, Learning & memory.

[143]  H. Eichenbaum Hippocampus Cognitive Processes and Neural Representations that Underlie Declarative Memory , 2004, Neuron.

[144]  A. Treves,et al.  Distinct Ensemble Codes in Hippocampal Areas CA3 and CA1 , 2004, Science.

[145]  Bruno A Olshausen,et al.  Sparse coding of sensory inputs , 2004, Current Opinion in Neurobiology.

[146]  J. Guzowski,et al.  Differences in Hippocampal Neuronal Population Responses to Modifications of an Environmental Context: Evidence for Distinct, Yet Complementary, Functions of CA3 and CA1 Ensembles , 2004, The Journal of Neuroscience.

[147]  Rufin VanRullen,et al.  Temporal codes and sparse representations: A key to understanding rapid processing in the visual system , 2004, Journal of Physiology-Paris.

[148]  J. D. McGaugh The amygdala modulates the consolidation of memories of emotionally arousing experiences. , 2004, Annual review of neuroscience.

[149]  R. Clark,et al.  The medial temporal lobe. , 2004, Annual review of neuroscience.

[150]  James L. McClelland,et al.  Semantic Cognition: A Parallel Distributed Processing Approach , 2004 .

[151]  P. Dayan,et al.  Off-line replay maintains declarative memories in a model of hippocampal-neocortical interactions , 2004, Nature Neuroscience.

[152]  F. H. Lopes da Silva,et al.  Two reentrant pathways in the hippocampal‐entorhinal system , 2004, Hippocampus.

[153]  Alison R Preston,et al.  Hippocampal contribution to the novel use of relational information in declarative memory , 2004, Hippocampus.

[154]  M. Shapiro,et al.  Prospective and Retrospective Memory Coding in the Hippocampus , 2003, Neuron.

[155]  R. O’Reilly,et al.  Modeling hippocampal and neocortical contributions to recognition memory: a complementary-learning-systems approach. , 2003, Psychological review.

[156]  May-Britt Moser,et al.  One-Shot Memory in Hippocampal CA3 Networks , 2003, Neuron.

[157]  J. Csicsvari,et al.  Communication between neocortex and hippocampus during sleep in rodents , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[158]  M. Quirk,et al.  Requirement for Hippocampal CA3 NMDA Receptors in Associative Memory Recall , 2002, Science.

[159]  R. O’Reilly,et al.  Conjunctive representations in learning and memory: principles of cortical and hippocampal function. , 2001, Psychological review.

[160]  H. Eichenbaum,et al.  Hippocampal Neurons Encode Information about Different Types of Memory Episodes Occurring in the Same Location , 2000, Neuron.

[161]  J L Gallant,et al.  Sparse coding and decorrelation in primary visual cortex during natural vision. , 2000, Science.

[162]  M. Hasselmo Neuromodulation: acetylcholine and memory consolidation , 1999, Trends in Cognitive Sciences.

[163]  H. Eichenbaum,et al.  The Hippocampus, Memory, and Place Cells Is It Spatial Memory or a Memory Space? , 1999, Neuron.

[164]  R. French Catastrophic forgetting in connectionist networks , 1999, Trends in Cognitive Sciences.

[165]  H. Eichenbaum,et al.  The global record of memory in hippocampal neuronal activity , 1999, Nature.

[166]  David Wood,et al.  Luddites must not block progress in genetics , 1999, Nature.

[167]  B. McNaughton,et al.  Spatial Firing Properties of Hippocampal CA1 Populations in an Environment Containing Two Visually Identical Regions , 1998, The Journal of Neuroscience.

[168]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[169]  B L McNaughton,et al.  Path Integration and Cognitive Mapping in a Continuous Attractor Neural Network Model , 1997, The Journal of Neuroscience.

[170]  H. Eichenbaum,et al.  The hippocampus and memory for orderly stimulus relations. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[171]  L. Nadel,et al.  Memory consolidation, retrograde amnesia and the hippocampal complex , 1997, Current Opinion in Neurobiology.

[172]  A. Treves,et al.  The representational capacity of the distributed encoding of information provided by populations of neurons in primate temporal visual cortex , 1997, Experimental Brain Research.

[173]  Anthony V. Robins,et al.  Consolidation in Neural Networks and in the Sleeping Brain , 1996, Connect. Sci..

[174]  B. McNaughton,et al.  Replay of Neuronal Firing Sequences in Rat Hippocampus During Sleep Following Spatial Experience , 1996, Science.

[175]  H. Eichenbaum,et al.  Conservation of hippocampal memory function in rats and humans , 1996, Nature.

[176]  James L. McClelland,et al.  Understanding normal and impaired word reading: computational principles in quasi-regular domains. , 1996, Psychological review.

[177]  James L. McClelland,et al.  Considerations arising from a complementary learning systems perspective on hippocampus and neocortex , 1996, Hippocampus.

[178]  W E Skaggs,et al.  Interactions between location and task affect the spatial and directional firing of hippocampal neurons , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[179]  James L. McClelland,et al.  Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. , 1995, Psychological review.

[180]  James L. McClelland,et al.  Hippocampal conjunctive encoding, storage, and recall: Avoiding a trade‐off , 1994, Hippocampus.

[181]  B. McNaughton,et al.  Reactivation of hippocampal ensemble memories during sleep. , 1994, Science.

[182]  M. Hasselmo,et al.  Laminar selectivity of the cholinergic suppression of synaptic transmission in rat hippocampal region CA1: computational modeling and brain slice physiology , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[183]  E. Rolls,et al.  Computational analysis of the role of the hippocampus in memory , 1994, Hippocampus.

[184]  L. Squire,et al.  The learning of categories: parallel brain systems for item memory and category knowledge. , 1993, Science.

[185]  H. Eichenbaum,et al.  Memory, amnesia, and the hippocampal system , 1993 .

[186]  R. Muller,et al.  The positional firing properties of medial entorhinal neurons: description and comparison with hippocampal place cells , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[187]  E T Rolls,et al.  Computational constraints suggest the need for two distinct input systems to the hippocampal CA3 network , 1992, Hippocampus.

[188]  R Ratcliff,et al.  Connectionist models of recognition memory: constraints imposed by learning and forgetting functions. , 1990, Psychological review.

[189]  David E. Rumelhart,et al.  Brain style computation: learning and generalization , 1990 .

[190]  Geoffrey E. Hinton,et al.  Distributed Representations , 1986, The Philosophy of Artificial Intelligence.

[191]  C. Gallistel The organization of learning , 1990 .

[192]  B. McNaughton,et al.  Comparison of spatial and temporal characteristics of neuronal activity in sequential stages of hippocampal processing. , 1990, Progress in brain research.

[193]  G. Buzsáki Two-stage model of memory trace formation: A role for “noisy” brain states , 1989, Neuroscience.

[194]  John R. Anderson,et al.  Human memory: An adaptive perspective. , 1989 .

[195]  Michael McCloskey,et al.  Catastrophic Interference in Connectionist Networks: The Sequential Learning Problem , 1989 .

[196]  Stephen Grossberg,et al.  A massively parallel architecture for a self-organizing neural pattern recognition machine , 1988, Comput. Vis. Graph. Image Process..

[197]  B. McNaughton,et al.  Hippocampal synaptic enhancement and information storage within a distributed memory system , 1987, Trends in Neurosciences.

[198]  Stephen Grossberg,et al.  Competitive Learning: From Interactive Activation to Adaptive Resonance , 1987, Cogn. Sci..

[199]  Terrence J. Sejnowski,et al.  Parallel Networks that Learn to Pronounce English Text , 1987, Complex Syst..

[200]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[201]  Douglas L. Hintzman,et al.  "Schema Abstraction" in a Multiple-Trace Memory Model , 1986 .

[202]  L. Nadel,et al.  The medial temporal region and memory consolidation: A new hypothesis , 2014 .

[203]  R. Nosofsky American Psychological Association, Inc. Choice, Similarity, and the Context Theory of Classification , 2022 .

[204]  James L. McClelland,et al.  An interactive activation model of context effects in letter perception: I. An account of basic findings. , 1981 .

[205]  J. Cutting a Cognitive approach to Korsakoff's Syndrome , 1978, Cortex.

[206]  Douglas L. Medin,et al.  Context theory of classification learning. , 1978 .

[207]  H B Barlow,et al.  Single units and sensation: a neuron doctrine for perceptual psychology? , 1972, Perception.

[208]  D Marr,et al.  Simple memory: a theory for archicortex. , 1971, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[209]  E Turner,et al.  Hippocampus and memory. , 1969, Lancet.

[210]  W. Scoville,et al.  LOSS OF RECENT MEMORY AFTER BILATERAL HIPPOCAMPAL LESIONS , 1957, Journal of neurology, neurosurgery, and psychiatry.