Well-posedness of 3D vortex sheets with surface tension

We prove well-posedness for the initial value problem for a vortex sheet in 3D fluids, in the presence of surface tension. We first reformulate the problem by making a favorable choice of variables and parameterizations. We then perform energy estimates for the evolution equations. It is important to note that the Kelvin-Helmholtz instability is present for the vortex sheet in the absence of surface tension. Accordingly, we must construct the energy functional carefully with an eye toward the regularization of this instability. Well-posedness follows from the estimates.

[1]  David M. Ambrose,et al.  Well-Posedness of Vortex Sheets with Surface Tension , 2003, SIAM J. Math. Anal..

[2]  L. Evans,et al.  Hardy spaces and the two-dimensional Euler equations with nonnegative vorticity , 1994 .

[3]  Z. Xin,et al.  Existence of Vortex Sheets with¶Reflection Symmetry in Two Space Dimensions , 2001 .

[4]  Guido Schneider,et al.  The long‐wave limit for the water wave problem I. The case of zero surface tension , 2000 .

[5]  Well Posedness for the Motion of a Compressible Liquid with Free Surface Boundary , 2005, math/0504339.

[6]  N. Tanaka,et al.  On the two-phase free boundary problem for two-dimensional water waves , 1997 .

[7]  Jalal Shatah,et al.  Geometry and a priori estimates for free boundary problems of the Euler's equation , 2006 .

[8]  Tadayoshi Kano,et al.  Sur les ondes de surface de l’eau avec une justification mathématique des équations des ondes en eau peu profonde , 1979 .

[9]  T. Hou,et al.  Removing the stiffness from interfacial flows with surface tension , 1994 .

[10]  Daniel Coutand,et al.  Well-posedness of the free-surface incompressible Euler equations with or without surface tension , 2005 .

[11]  D. Christodoulou,et al.  S E M I N A I R E E quations aux , 2008 .

[12]  Hideaki Yosihara,et al.  Gravity Waves on the Free Surface of an Incompressible Perfect Fluid of Finite Depth , 1982 .

[13]  Hideaki Yosihara Capillary-gravity waves for an incompressible ideal fluid , 1983 .

[14]  Russel E. Caflisch,et al.  Long time existence for a slightly perturbed vortex sheet , 1986 .

[15]  Sijue Wu Mathematical analysis of vortex sheets , 2006 .

[16]  Qing Nie,et al.  The nonlinear evolution of vortex sheets with surface tension in axisymmetric flows , 2001 .

[17]  T. Hou,et al.  Singularity formation in three-dimensional vortex sheets , 2001 .

[18]  Ben Schweizer,et al.  On the three-dimensional Euler equations with a free boundary subject to surface tension , 2005 .

[19]  G. Folland Introduction to Partial Differential Equations , 1976 .

[20]  G. Lebeau Régularité du problème de Kelvin–Helmholtz pour l’équation d’Euler 2D , 2001 .

[21]  G. Pedrizzetti,et al.  Vortex Dynamics , 2011 .

[22]  David Lannes,et al.  Well-posedness of the water-waves equations , 2005 .

[23]  Steven Schochet,et al.  The weak vorticity formulation of the 2-D Euler equations and concentration-cancellation , 1995 .

[24]  J. Delort Existence de nappes de tourbillon en dimension deux , 1991 .

[25]  David J. Haroldsen,et al.  Numerical Calculation of Three-Dimensional Interfacial Potential Flows Using the Point Vortex Method , 1998, SIAM J. Sci. Comput..

[26]  Steven A. Orszag,et al.  Generalized vortex methods for free-surface flow problems , 1982, Journal of Fluid Mechanics.

[27]  Thomas Y. Hou,et al.  The long-time motion of vortex sheets with surface tension , 1997 .

[28]  Uriel Frisch,et al.  Finite time analyticity for the two and three dimensional Kelvin-Helmholtz instability , 1981 .

[29]  D. W. Moore,et al.  The spontaneous appearance of a singularity in the shape of an evolving vortex sheet , 1979, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[30]  Y. Kaneda,et al.  Singularity formation in three-dimensional motion of a vortex sheet , 1995, Journal of Fluid Mechanics.

[31]  A priori estimates for fluid interface problems , 2006, math/0609542.

[32]  R. Caflisch,et al.  The collapse of an axi-symmetric, swirling vortex sheet , 1993 .

[33]  Sijue Wu,et al.  Well-posedness in Sobolev spaces of the full water wave problem in 2-D , 1997 .

[34]  Nader Masmoudi,et al.  The zero surface tension limit two‐dimensional water waves , 2005 .

[35]  Walter Craig,et al.  An existence theory for water waves and the boussinesq and korteweg-devries scaling limits , 1985 .

[36]  Sijue Wu,et al.  Well-posedness in Sobolev spaces of the full water wave problem in 3-D , 1999 .

[37]  Lagrangian theory for 3D vortex sheets with axial or helical symmetry , 1992 .