Well-posedness of 3D vortex sheets with surface tension
暂无分享,去创建一个
[1] David M. Ambrose,et al. Well-Posedness of Vortex Sheets with Surface Tension , 2003, SIAM J. Math. Anal..
[2] L. Evans,et al. Hardy spaces and the two-dimensional Euler equations with nonnegative vorticity , 1994 .
[3] Z. Xin,et al. Existence of Vortex Sheets with¶Reflection Symmetry in Two Space Dimensions , 2001 .
[4] Guido Schneider,et al. The long‐wave limit for the water wave problem I. The case of zero surface tension , 2000 .
[5] Well Posedness for the Motion of a Compressible Liquid with Free Surface Boundary , 2005, math/0504339.
[6] N. Tanaka,et al. On the two-phase free boundary problem for two-dimensional water waves , 1997 .
[7] Jalal Shatah,et al. Geometry and a priori estimates for free boundary problems of the Euler's equation , 2006 .
[8] Tadayoshi Kano,et al. Sur les ondes de surface de l’eau avec une justification mathématique des équations des ondes en eau peu profonde , 1979 .
[9] T. Hou,et al. Removing the stiffness from interfacial flows with surface tension , 1994 .
[10] Daniel Coutand,et al. Well-posedness of the free-surface incompressible Euler equations with or without surface tension , 2005 .
[11] D. Christodoulou,et al. S E M I N A I R E E quations aux , 2008 .
[12] Hideaki Yosihara,et al. Gravity Waves on the Free Surface of an Incompressible Perfect Fluid of Finite Depth , 1982 .
[13] Hideaki Yosihara. Capillary-gravity waves for an incompressible ideal fluid , 1983 .
[14] Russel E. Caflisch,et al. Long time existence for a slightly perturbed vortex sheet , 1986 .
[15] Sijue Wu. Mathematical analysis of vortex sheets , 2006 .
[16] Qing Nie,et al. The nonlinear evolution of vortex sheets with surface tension in axisymmetric flows , 2001 .
[17] T. Hou,et al. Singularity formation in three-dimensional vortex sheets , 2001 .
[18] Ben Schweizer,et al. On the three-dimensional Euler equations with a free boundary subject to surface tension , 2005 .
[19] G. Folland. Introduction to Partial Differential Equations , 1976 .
[20] G. Lebeau. Régularité du problème de Kelvin–Helmholtz pour l’équation d’Euler 2D , 2001 .
[21] G. Pedrizzetti,et al. Vortex Dynamics , 2011 .
[22] David Lannes,et al. Well-posedness of the water-waves equations , 2005 .
[23] Steven Schochet,et al. The weak vorticity formulation of the 2-D Euler equations and concentration-cancellation , 1995 .
[24] J. Delort. Existence de nappes de tourbillon en dimension deux , 1991 .
[25] David J. Haroldsen,et al. Numerical Calculation of Three-Dimensional Interfacial Potential Flows Using the Point Vortex Method , 1998, SIAM J. Sci. Comput..
[26] Steven A. Orszag,et al. Generalized vortex methods for free-surface flow problems , 1982, Journal of Fluid Mechanics.
[27] Thomas Y. Hou,et al. The long-time motion of vortex sheets with surface tension , 1997 .
[28] Uriel Frisch,et al. Finite time analyticity for the two and three dimensional Kelvin-Helmholtz instability , 1981 .
[29] D. W. Moore,et al. The spontaneous appearance of a singularity in the shape of an evolving vortex sheet , 1979, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[30] Y. Kaneda,et al. Singularity formation in three-dimensional motion of a vortex sheet , 1995, Journal of Fluid Mechanics.
[31] A priori estimates for fluid interface problems , 2006, math/0609542.
[32] R. Caflisch,et al. The collapse of an axi-symmetric, swirling vortex sheet , 1993 .
[33] Sijue Wu,et al. Well-posedness in Sobolev spaces of the full water wave problem in 2-D , 1997 .
[34] Nader Masmoudi,et al. The zero surface tension limit two‐dimensional water waves , 2005 .
[35] Walter Craig,et al. An existence theory for water waves and the boussinesq and korteweg-devries scaling limits , 1985 .
[36] Sijue Wu,et al. Well-posedness in Sobolev spaces of the full water wave problem in 3-D , 1999 .
[37] Lagrangian theory for 3D vortex sheets with axial or helical symmetry , 1992 .