Recyclable amplification protocol for the single-photon entangled state

Photon loss is one of the main obstacles in long-distance quantum communication. In this letter, we put forward a highly efficient recyclable amplification protocol for protecting the single-photon entangled state. Different from all of the existing amplification protocols, by repeating the protocol, the discarded items can be reused to increase the success probability and the distilled new mixed state can be further amplified in a next round to increase its fidelity. In particular, this protocol is quite useful under high photon loss conditions. These features make our amplification protocol useful in future long-distance quantum communications.

[1]  Keiji Sasaki,et al.  Optimized phase switching using a single-atom nonlinearity , 2002, quant-ph/0208029.

[2]  N. Gisin,et al.  Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier. , 2010, Physical review letters.

[3]  Ming Yang,et al.  Purifying entanglement of noisy two-qubit states via entanglement swapping , 2013, 1306.4451.

[4]  G Leuchs,et al.  Continuous variable quantum cryptography: beating the 3 dB loss limit. , 2002, Physical review letters.

[5]  N Gisin,et al.  Purification of single-photon entanglement. , 2010, Physical review letters.

[6]  Gui-Lu Long,et al.  Experimental Optimal Single Qubit Purification in an NMR Quantum Information Processor , 2014, Scientific Reports.

[7]  Gershon Kurizki,et al.  Deterministic quantum logic with photons via optically induced photonic band gaps , 2005 .

[8]  Yang Liu,et al.  Realization of Kraus operators and POVM measurements using a duality quantum computer , 2014 .

[9]  G M D'Ariano,et al.  Using entanglement improves the precision of quantum measurements. , 2001, Physical review letters.

[10]  T. Ralph,et al.  Nondeterministic Noiseless Linear Amplification of Quantum Systems , 2009 .

[11]  Cong Cao,et al.  Efficient nonlocal two-step entanglement concentration protocol for three-level atoms in an arbitrary less-entangledW state using cavity input-output process , 2014 .

[12]  Bing He,et al.  Creation of high-quality long-distance entanglement with flexible resources , 2008, 0808.2320.

[13]  Yu-Bo Sheng,et al.  Distilling single-photon entanglement from photon loss and decoherence , 2013, 1306.1601.

[14]  A. Rauschenbeutel,et al.  Fiber-optical switch controlled by a single atom. , 2013, Physical review letters.

[15]  Geoff J. Pryde,et al.  Heralded noiseless amplification of a photon polarization qubit , 2012, Nature Physics.

[16]  Xiaolong Su,et al.  Preparation of multipartite entangled states used for quantum information networks , 2014 .

[17]  Gui-Lu Long,et al.  Entanglement generation with coherent states using cross-Kerr nonlinearity , 2013 .

[18]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[19]  Jeffrey H. Shapiro,et al.  Single-photon Kerr nonlinearities do not help quantum computation , 2006 .

[20]  Tie-Jun Wang,et al.  Linear-optical implementation of hyperdistillation from photon loss , 2014 .

[21]  E. Waks,et al.  Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity. , 2012, Physical review letters.

[22]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[23]  W. Munro,et al.  Quantum error correction for beginners , 2009, Reports on progress in physics. Physical Society.

[24]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[25]  Improving Heralded Amplifiers In Device Independent QKD , 2011 .

[26]  Vitali,et al.  Complete quantum teleportation with a kerr nonlinearity , 2000, Physical review letters.

[27]  Christoph Simon,et al.  Cross-Kerr nonlinearity between continuous-mode coherent states and single photons , 2011, 1102.3724.

[28]  Lan Zhou,et al.  Multipartite entanglement concentration for nitrogen-vacancy center and microtoroidal resonator system , 2013 .

[29]  Io-Chun Hoi,et al.  Giant cross-Kerr effect for propagating microwaves induced by an artificial atom. , 2012, Physical review letters.

[30]  Jian Li,et al.  Quantum control gates with weak cross-Kerr nonlinearity , 2008, 0811.3364.

[31]  Fuguo Deng,et al.  Heralded entanglement concentration for photon systems with linear-optical elements , 2015 .

[32]  Jeffrey H. Shapiro,et al.  Continuous-time cross-phase modulation and quantum computation , 2007 .

[33]  T. Moroder,et al.  Heralded-qubit amplifiers for practical device-independent quantum key distribution , 2011, 1105.2573.

[34]  N. Walk,et al.  Heralded noiseless linear amplification and distillation of entanglement , 2009, 0907.3638.

[35]  Christoph Simon,et al.  Two-photon dynamics in coherent Rydberg atomic ensemble. , 2014, Physical review letters.

[36]  Matteo G. A. Paris,et al.  Quantum-state engineering assisted by entanglement , 2003 .

[37]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[38]  G M D'Ariano,et al.  Quantum tomography for measuring experimentally the matrix elements of an arbitrary quantum operation. , 2001, Physical review letters.

[39]  Christoph Simon,et al.  Purification of single-photon entanglement with linear optics , 2008, 0811.2953.

[40]  Aephraim M. Steinberg,et al.  Amplifying single-photon nonlinearity using weak measurements. , 2010, Physical review letters.

[41]  Shengmei Zhao,et al.  Efficient two-step entanglement concentration for arbitrary W states , 2012, 1202.3019.

[42]  Nicolas Gisin,et al.  Quantum repeaters based on atomic ensembles and linear optics , 2009, 0906.2699.

[43]  Biao Wu,et al.  Generating multiphoton Greenberger-Horne-Zeilinger states with weak cross-Kerr nonlinearity , 2007 .

[44]  Guang-Can Guo,et al.  Experimental demonstration of photonic quantum ratchet , 2011 .

[45]  Qi Guo,et al.  Simplified optical quantum-information processing via weak cross-Kerr nonlinearities , 2011 .

[46]  Bing He,et al.  Single-photon logic gates using minimal resources , 2009, 0909.0300.

[47]  N. Gisin,et al.  Heralded photon amplification for quantum communication , 2012, 1203.3396.

[48]  T. Spiller,et al.  Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities , 2004, quant-ph/0408117.

[49]  B. He,et al.  Continuous-mode effects and photon-photon phase gate performance , 2010, 1012.1683.

[50]  Ru Zhang,et al.  Complete entanglement analysis on electron spins using quantum dot and microcavity coupled system , 2013 .

[51]  Guang-Can Guo,et al.  Continuous-variable-entanglement distillation with photon addition , 2013 .

[52]  Jonathan P. Dowling,et al.  Single-photon quantum-nondemolition detectors constructed with linear optics and projective measurements , 2002 .

[53]  Lian-Ao Wu,et al.  Overview of quantum memory protection and adiabaticity induction by fast signal control , 2014, 1412.1783.

[54]  Chuan Wang,et al.  Arbitrarily long distance quantum communication using inspection and power insertion , 2009 .

[55]  Hyunseok Jeong Quantum computation using weak nonlinearities: Robustness against decoherence , 2006 .

[56]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[57]  A. P. Lund,et al.  Optimal architecture for a nondeterministic noiseless linear amplifier , 2014 .

[58]  Chengjie Zhu,et al.  Giant kerr nonlinearity, controlled entangled photons and polarization phase gates in coupled quantum-well structures. , 2011, Optics express.

[59]  W. Munro,et al.  A near deterministic linear optical CNOT gate , 2004 .

[60]  Julio Gea-Banacloche,et al.  Impossibility of large phase shifts via the giant Kerr effect with single-photon wave packets , 2009, 0911.4682.

[61]  G Leuchs,et al.  Quantum key distribution with bright entangled beams. , 2002, Physical review letters.

[62]  B. Zheng,et al.  Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs , 2012, 1202.2190.

[63]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[64]  Kae Nemoto,et al.  Weak nonlinearities: a new route to optical quantum computation , 2005, quant-ph/0507084.

[65]  Nicolas Sangouard,et al.  Quantum repeaters based on heralded qubit amplifiers , 2011, 1111.5185.

[66]  Guang-Can Guo,et al.  Protecting single-photon entangled state from photon loss with noiseless linear amplification , 2012 .

[67]  Heping Zeng,et al.  Single-photon detection and its applications , 2014 .

[68]  G. J. Milburn,et al.  Quantum-information processing via a lossy bus , 2006, quant-ph/0607206.

[69]  Fabio Sciarrino,et al.  Teleportation of a vacuum--one-photon qubit. , 2002, Physical review letters.

[70]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[71]  Xiongfeng Ma,et al.  Efficient heralding of photonic qubits with applications to device-independent quantum key distribution , 2011, 1105.2811.

[72]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.