Numbers and Computers

Computers use number bases other than the traditional base 10. In this chapter we take a look at number bases focusing on those most frequently used in association with computers. We look at how to construct numbers in these bases as well as how to move numbers between different bases. 1.1 Representing Numbers The ancient Romans used letters to represent their numbers. These are the “Roman numerals” which are often taught to children, I 1 II 2 III 3 IV 4 (1 before 5) V 5 X 10 L 50 C 100 D 500 M 1000 By grouping these numbers we can build larger numbers (integers),

[1]  Ronald T. Kneusel,et al.  Chaos, number theory, and computers , 2001 .

[2]  T. Sunaga Theory of an interval algebra and its application to numerical analysis , 2009 .

[3]  Ralph Baker Kearfott An overview of the upcoming IEEE P-1788 working group document: Standard for interval arithmetic , 2013, 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS).

[4]  Gerald J. Sussman,et al.  The First Report on Scheme Revisited , 1998, High. Order Symb. Comput..

[5]  Kristopher L. Kuhlman,et al.  mpmath: a Python library for arbitrary-precision floating-point arithmetic , 2017 .

[6]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[7]  Whitfield Diffie,et al.  New Directions in Cryptography , 1976, IEEE Trans. Inf. Theory.

[8]  Arnold Schönhage,et al.  Schnelle Multiplikation großer Zahlen , 1971, Computing.

[9]  Victor Joseph. Monte Leon Automatic error analysis in finite digital computations, using range arithmetic. , 1966 .

[10]  Paul G. Comba,et al.  Exponentiation Cryptosystems on the IBM PC , 1990, IBM Syst. J..

[11]  Donald E. Knuth,et al.  The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .

[12]  Mei Han An,et al.  accuracy and stability of numerical algorithms , 1991 .

[13]  Craig B. Borkowf,et al.  Random Number Generation and Monte Carlo Methods , 2000, Technometrics.

[14]  M.N. Sastry,et al.  Structure and interpretation of computer programs , 1986, Proceedings of the IEEE.

[15]  Ali Y. Duale,et al.  Decimal floating-point in z9: An implementation and testing perspective , 2007, IBM J. Res. Dev..

[16]  R. B. Kearfott,et al.  Interval Computations: Introduction, Uses, and Resources , 2000 .

[17]  P. R. Bevington,et al.  Data Reduction and Error Analysis for the Physical Sciences , 1969 .

[18]  C. Pomerance,et al.  Prime Numbers: A Computational Perspective , 2002 .

[19]  Forman S. Acton,et al.  Real Computing Made Real: Preventing Errors in Scientific and Engineering Calculations , 1997 .

[20]  Jean-Michel Muller,et al.  Handbook of Floating-Point Arithmetic (2nd Ed.) , 2018 .

[21]  Tudor Jebelean,et al.  An Algorithm for Exact Division , 1993, J. Symb. Comput..

[22]  Siegfried M. Rump,et al.  Journal of Computational and Applied Mathematics Accurate Solution of Dense Linear Systems, Part Ii: Algorithms Using Directed Rounding , 2022 .

[23]  Jean-Francois Colonna The subjectivity of computers , 1993 .

[24]  M. H. van Emden,et al.  Interval arithmetic: From principles to implementation , 2001, JACM.

[25]  B. Randell,et al.  The Origins of Digital Computers: Selected Papers (Monographs in Computer Science) , 1982 .

[26]  Raúl Rojas,et al.  Konrad Zuse's Legacy: The Architecture of the Z1 and Z3 , 1997, IEEE Ann. Hist. Comput..

[27]  Ulrich W. Kulisch,et al.  Definition of the Arithmetic Operations and Comparison Relations for an Interval Arithmetic , 2011, Reliab. Comput..

[28]  Joachim Ziegler,et al.  Fast recursive division , 1998 .

[29]  César A. Muñoz,et al.  Verified Real Number Calculations: A Library for Interval Arithmetic , 2007, IEEE Transactions on Computers.

[30]  G. Gibson The Thirteen Books of Euclid's Elements , 1927, Nature.

[31]  William James Cody,et al.  Software Manual for the Elementary Functions (Prentice-Hall series in computational mathematics) , 1980 .

[32]  K. W. Cattermole The Fourier Transform and its Applications , 1965 .