Three‐Dimensional Spectroscopic Imaging with Time‐Varying Gradients

A spectroscopic imaging sequence with a time‐varying readout gradient in the slice selection direction is used to image multiple contiguous slices. For a given voxel size, the imaging time and signal‐to‐noise ratio of the three‐dimensional spectroscopic sequence are the same as for a single slice acquisition without the oscillating readout gradient. The data reconstruction employs a gridding algorithm in two dimensions to interpolate the nonuniformly sampled data onto a Cartesian grid, and a fast Fourier transform in four dimensions: three spatial dimensions and the spectral dimension. The method is demonstrated by in vivo imaging of NAA in human brain at 1.5 T with 10 slices of 16 x 16 pixels spectroscopic images acquired in a total scan time of 17 min.

[1]  D. Twieg The k-trajectory formulation of the NMR imaging process with applications in analysis and synthesis of imaging methods. , 1983, Medical physics.

[2]  K. Uğurbil,et al.  NMR chemical shift imaging in three dimensions. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[3]  W Dreher,et al.  Fast proton spectroscopic imaging using the sliced k‐space method , 1993, Magnetic resonance in medicine.

[4]  G H Glover,et al.  Lipid‐suppressed single‐and multisection proton spectroscopic imaging of the human brain , 1992, Journal of magnetic resonance imaging : JMRI.

[5]  Kensuke Sekihara,et al.  High-speed spatially resolved NMR spectroscopy using phase-modulated spin-echo trains. Expansion of the spectral bandwidth by combined use of delayed spin-echo trains , 1985 .

[6]  G B Matson,et al.  3D phase encoding 1H spectroscopic imaging of human brain. , 1992, Magnetic resonance imaging.

[7]  A Macovski,et al.  Volumetric NMR imaging with time‐varying gradients , 1985, Magnetic Resonance in Medicine.

[8]  P Webb,et al.  Rapid, fully automatic, arbitrary‐volume in vivo shimming , 1991, Magnetic resonance in medicine.

[9]  Jullie W Pan,et al.  A fully localized 1H homonuclear editing sequence to observe lactate in human skeletal muscle after exercise , 1989 .

[10]  A. Haase,et al.  Snapshot flash mri. applications to t1, t2, and chemical‐shift imaging , 1990, Magnetic resonance in medicine.

[11]  J. Pauly,et al.  Characterization of atherosclerosis with a 1.5‐T imaging system , 1993, Journal of magnetic resonance imaging : JMRI.

[12]  Kensuke Sekihara,et al.  High-speed spatially resolved high-resolution NMR spectroscopy , 1985 .

[13]  Axel Haase,et al.  Spectroscopic FLASH NMR imaging (SPLASH imaging) , 1987 .

[14]  Jullie W Pan,et al.  2D 1H spectroscopic imaging of the human brain at 4.1 T , 1994, Magnetic resonance in medicine.

[15]  D Le Bihan,et al.  Three-dimensional echo-planar MR spectroscopic imaging at short echo times in the human brain. , 1994, Radiology.

[16]  P Mansfield,et al.  Spatial mapping of the chemical shift in NMR , 1983, Magnetic resonance in medicine.

[17]  R. Sepponen,et al.  A Method for Chemical Shift Imaging: Demonstration of Bone Marrow Involvement with Proton Chemical Shift Imaging , 1984, Journal of computer assisted tomography.

[18]  Applications of time-varying gradients in existing magnetic resonance imaging systems. , 1986, Medical physics.

[19]  J H Duyn,et al.  Multisection proton MR spectroscopic imaging of the brain. , 1993, Radiology.

[20]  D G Nishimura,et al.  Spatially resolved and localized real‐time velocity distribution , 1993, Magnetic resonance in medicine.

[21]  W. Perman,et al.  Spatially resolved high resolution spectroscopy by “four-dimensional” NMR , 1983 .

[22]  D. Twieg,et al.  A general treatment of NMR imaging with chemical shifts and motion , 1987, Magnetic resonance in medicine.

[23]  J. D. O'Sullivan,et al.  A Fast Sinc Function Gridding Algorithm for Fourier Inversion in Computer Tomography , 1985, IEEE Transactions on Medical Imaging.

[24]  P. Mansfield,et al.  Chemical‐Shift Imaging , 1985, Magnetic resonance in medicine.

[25]  D. Twieg Acquistion and Accuracy in Rapid NMR Imaging Methods , 1985, Magnetic resonance in medicine.

[26]  F. Harris On the use of windows for harmonic analysis with the discrete Fourier transform , 1978, Proceedings of the IEEE.

[27]  D B Twieg Multiple‐output chemical shift imaging (MOCSI): A practical technique for rapid spectroscopic imaging , 1989, Magnetic resonance in medicine.

[28]  A. Macovski,et al.  Selection of a convolution function for Fourier inversion using gridding [computerised tomography application]. , 1991, IEEE transactions on medical imaging.

[29]  M. Doyle,et al.  Chemical‐shift imaging: A hybrid approach , 1987, Magnetic resonance in medicine.

[30]  W. Edelstein,et al.  The intrinsic signal‐to‐noise ratio in NMR imaging , 1986, Magnetic resonance in medicine.

[31]  P. Mansfield,et al.  PEEP—A rapid chemical‐shift imaging method , 1989, Magnetic resonance in medicine.

[32]  Bob S. Hu,et al.  Fast Spiral Coronary Artery Imaging , 1992, Magnetic resonance in medicine.

[33]  R. R. Ernst,et al.  Application of Fourier Transform Spectroscopy to Magnetic Resonance , 1966 .

[34]  Richard Bowtell,et al.  Proton chemical-shift mapping using PREP , 1989 .

[35]  P Webb,et al.  A fast spectroscopic imaging method using a blipped phase encode gradient , 1989, Magnetic resonance in medicine.