Concept-based clustering of textual documents using SOM
暂无分享,去创建一个
[1] Teuvo Kohonen,et al. Self-organized formation of topologically correct feature maps , 2004, Biological Cybernetics.
[2] Yong Wang,et al. Incorporating semantic and syntactic information into document representation for document clustering , 2005 .
[3] Abdelmalek Amine,et al. SOM-BASED CLUSTERING OF TEXTUAL DOCUMENTS USING WORDNET , 2009 .
[4] George W. Furnas,et al. Pictures of relevance: A geometric analysis of similarity measures , 1987, J. Am. Soc. Inf. Sci..
[5] Kjersti Aas,et al. Text Categorisation: A Survey , 1999 .
[6] Samuel Kaski,et al. Self organization of a massive document collection , 2000, IEEE Trans. Neural Networks Learn. Syst..
[7] Hinrich Schütze,et al. A comparison of classifiers and document representations for the routing problem , 1995, SIGIR '95.
[8] Claude de Loupy,et al. Evaluation de l'apport de connaissances linguistiques en desambigui͏̈sation sémantique et recherche documentaire , 2000 .
[9] Pavel Berkhin,et al. A Survey of Clustering Data Mining Techniques , 2006, Grouping Multidimensional Data.
[10] Daphne Koller,et al. Using machine learning to improve information access , 1998 .
[11] Rada Mihalcea,et al. Semantic Indexing using WordNet Senses , 2000 .
[12] Michael McGill,et al. Introduction to Modern Information Retrieval , 1983 .
[13] T. Kohonen. Self-Organized Formation of Correct Feature Maps , 1982 .
[14] Delphine Bernhard,et al. SOM-based Clustering of Multilingual Documents Using an Ontology , 2008 .
[15] Dan Shen,et al. Performance and Scalability of a Large-Scale N-gram Based Information Retrieval System , 2000, J. Digit. Inf..
[16] Fabrizio Sebastiani,et al. Machine learning in automated text categorization , 2001, CSUR.
[17] Julio Gonzalo,et al. Indexing with WordNet synsets can improve text retrieval , 1998, WordNet@ACL/COLING.