Improved phase sensitivity in spectral domain phase microscopy using line-field illumination and self phase-referencing.

We report a quantitative phase microscope based on spectral domain optical coherence tomography and line-field illumination. The line illumination allows self phase-referencing method to reject common-mode phase noise. The quantitative phase microscope also features a separate reference arm, permitting the use of high numerical aperture (NA > 1) microscope objectives for high resolution phase measurement at multiple points along the line of illumination. We demonstrate that the path-length sensitivity of the instrument can be as good as 41 pm/square root of Hz, which makes it suitable for nanometer scale study of cell motility. We present the detection of natural motions of cell surface and two-dimensional surface profiling of a HeLa cell.

[1]  T. Yatagai,et al.  High-speed three-dimensional human retinal imaging by line-field spectral domain optical coherence tomography. , 2007, Optics express.

[2]  Joseph A. Izatt,et al.  Spectral domain phase microscopy , 2004 .

[3]  R. Dasari,et al.  Diffraction phase microscopy for quantifying cell structure and dynamics. , 2006, Optics letters.

[4]  A. Fercher,et al.  Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye. , 2005, Optics express.

[5]  Gabriel Popescu,et al.  Hilbert phase microscopy for investigating fast dynamics in transparent systems. , 2005, Optics letters.

[6]  F Sachs,et al.  Voltage-induced membrane movement , 2001, Nature.

[7]  Thomas J. Flynn,et al.  TWO-DIMENSIONAL PHASE UNWRAPPING WITH MINIMUM WEIGHTED DISCONTINUITY , 1997 .

[8]  Gabriel Popescu,et al.  Quantitative phase imaging of live cells using fast Fourier phase microscopy. , 2007, Applied optics.

[9]  Toyohiko Yatagai,et al.  Profilometry with line-field Fourier-domain interferometry. , 2005, Optics express.

[10]  Taner Akkin,et al.  Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging. , 2005, Optics letters.

[11]  E. Cuche,et al.  Digital holography for quantitative phase-contrast imaging. , 1999, Optics letters.

[12]  Gabriel Popescu,et al.  Fourier phase microscopy for investigation of biological structures and dynamics. , 2004, Optics letters.

[13]  G. Ha Usler,et al.  "Coherence radar" and "spectral radar"-new tools for dermatological diagnosis. , 1998, Journal of biomedical optics.

[14]  Toyohiko Yatagai,et al.  Three-dimensional line-field Fourier domain optical coherence tomography for in vivo dermatological investigation. , 2006, Journal of biomedical optics.

[15]  C. Fang-Yen,et al.  Tomographic phase microscopy , 2008, Nature Methods.

[16]  Gabriel Popescu,et al.  Coherence properties of red blood cell membrane motions. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  M. Miwa,et al.  Low-coherent quantitative phase microscope for nanometer-scale measurement of living cells morphology. , 2008, Optics express.

[18]  Joseph A Izatt,et al.  Phase retrieval in low-coherence interferometric microscopy. , 2007, Optics letters.

[19]  A. Fercher,et al.  Wavelength-tuning interferometry of intraocular distances. , 1997, Applied optics.

[20]  Marinko Sarunic,et al.  Full-field swept-source phase microscopy , 2006, SPIE BiOS.

[21]  Zahid Yaqoob,et al.  Full field phase imaging using a harmonically matched diffraction grating pair based homodyne quadrature interferometer , 2007 .

[22]  Audrey K. Ellerbee,et al.  Spectral-domain phase microscopy. , 2004, Optics Letters.