Evolution of cellular diversity in primary motor cortex of human, marmoset monkey, and mouse
暂无分享,去创建一个
Christof Koch | Brian D. Aevermann | Richard H. Scheuermann | Thomas Höllt | Baldur van Lew | Bing Ren | Hongkui Zeng | Aviv Regev | Michael Hawrylycz | Jeroen Eggermont | Jesse Gillis | Hanqing Liu | Joseph R. Ecker | Marmar Moussa | Alexander Dobin | Andrew L. Ko | Song-Lin Ding | Evan Z. Macosko | Patrick R. Hof | Eran A. Mukamel | Ed S. Lein | Kun Zhang | Stephan Fischer | Hector Corrada Bravo | Peter V. Kharchenko | Jayaram Kancherla | Joshua Orvis | Seth A. Ament | Ronna Hertzano | Guoping Feng | Qiwen Hu | Gregory D. Horwitz | Steven A. McCarroll | Bosiljka Tasic | Trygve E Bakken | Anup Mahurkar | Staci A. Sorensen | Blue B. Lake | Rachel Dalley | Kimberly Smith | Jonathan T. Ting | Fenna M. Krienen | Zizhen Yao | Trygve E. Bakken | Rebecca D. Hodge | Anna Marie Yanny | Brian E. Kalmbach | Matthew Kroll | Michael Tieu | Melissa Goldman | Megan Crow | William J. Spain | Sten Linnarsson | Sebastian Preissl | Xiaomeng Hou | Fangming Xie | Dinh Diep | Olivier Poirion | C. Koch | S. Linnarsson | A. Regev | G. Feng | S. Mccarroll | M. Hawrylycz | Hongkui Zeng | Bosiljka Tasic | Zizhen Yao | Lucas T. Graybuck | Kimberly A. Smith | Darren Bertagnolli | J. Goldy | Jeremy A. Miller | K. Lathia | Christine Rimorin | Michael Tieu | Tamara Casper | Matthew Kroll | N. Dee | T. Daigle | E. Lein | Stephan Fischer | H. Bravo | R. Scheuermann | P. Hof | E. Macosko | Melissa Goldman | Anup Mahurkar | B. Ren | P. Kharchenko | G. Horwitz | A. Dobin | J. Ecker | W. Spain | Nongluk Plongthongkum | Kun Zhang | C. Luo | Joseph R. Nery | E. Mukamel | Jayaram Kancherla | A. Ko | D. Diep | J. Ting | J. Chun | S. Ding | R. Dalley | Joshua Orvis | Owen R. White | J. Gillis | T. Höllt | B. Lelieveldt | B. Lake | Angeline C. Rivkin | Rosa G. Castanon | S. Preissl | Rongxin Fang | Nikolas L. Jorstad | C. Keene | R. Hertzano | S. Ament | M. Crow | Olivier B. Poirion | Brian R. Herb | R. Hodge | J. Eggermont | B. Aevermann | Saroja Somasundaram | Xiaomeng Hou | Y. Li | B. Kalmbach | Kirsten Crichton | D. McMillen | J. Sulc | A. Torkelson | Herman Tung | Hanqing Liu | Fangming Xie | Andrew I. Aldridge | Anna Bartlett | Qiwen Hu | Thanh Pham | Xinxin Wang | A. Yanny | K. Siletti | Marmar Moussa | Scott F. Owen | N. Dembrow | Adriana E. Sedeño-Cortés | C. Dirk Keene | Tanya L. Daigle | Nick Dee | Nongluk Plongthongkum | Nora M. Reed | Christine S. Liu | Anna Bartlett | Jerold Chun | W. Romanow | Darren Bertagnolli | Jeff Goldy | Chongyuan Luo | Wei Tian | Tamara Casper | Kirsten Crichton | Nikolai Dembrow | Weixiu Dong | Rongxin Fang | Kanan Lathia | Yang Eric Li | Delissa McMillen | Scott Owen | Carter R. Palmer | Thanh Pham | Christine Rimorin | Angeline Rivkin | William J. Romanow | Kimberly Siletti | Saroja Somasundaram | Josef Sulc | Amy Torkelson | Herman Tung | Xinxin Wang | Renee Zhang | Boudewijn P. Lelieveldt | Wei-ping Tian | Weixiu Dong | Renee Zhang | A. Mahurkar | O. White | R. Castanon | S. Sorensen | H. C. Bravo
[1] Andrew C. Adey,et al. Cicero Predicts cis-Regulatory DNA Interactions from Single-Cell Chromatin Accessibility Data. , 2018, Molecular cell.
[2] Sean C. Bendall,et al. Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis , 2015, Cell.
[3] Fernando Nogueira,et al. Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning , 2016, J. Mach. Learn. Res..
[4] Z. J. Huang,et al. Transcriptional Architecture of Synaptic Communication Delineates GABAergic Neuron Identity , 2017, Cell.
[5] V. Gradinaru,et al. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems , 2017, Nature Neuroscience.
[6] D. Dickel,et al. Spatiotemporal DNA Methylome Dynamics of the Developing Mammalian Fetus , 2017, bioRxiv.
[7] A. Kolodkin,et al. The RacGAP β2-Chimaerin Selectively Mediates Axonal Pruning in the Hippocampus , 2012, Cell.
[8] J. Colombo. The interlaminar glia: from serendipity to hypothesis , 2016, Brain Structure and Function.
[9] Tae Kyung Kim,et al. Layer-specific chromatin accessibility landscapes reveal regulatory networks in adult mouse visual cortex , 2017, eLife.
[10] Timothy L. Bailey,et al. Motif Enrichment Analysis: a unified framework and an evaluation on ChIP data , 2010, BMC Bioinformatics.
[11] David Kulp,et al. Innovations in Primate Interneuron Repertoire , 2019, bioRxiv.
[12] Paul J. Hoffman,et al. Comprehensive Integration of Single-Cell Data , 2018, Cell.
[13] Jesse R. Dixon,et al. Single nucleus multi-omics links human cortical cell regulatory genome diversity to disease risk variants , 2019, bioRxiv.
[14] Brian R. Lee,et al. Human cortical expansion involves diversification and specialization of supragranular intratelencephalic-projecting neurons , 2020, bioRxiv.
[15] P. Kharchenko,et al. Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain , 2017, Nature Biotechnology.
[16] G. Wagner,et al. The origin and evolution of cell types , 2016, Nature Reviews Genetics.
[17] Samantha Riesenfeld,et al. EmptyDrops: distinguishing cells from empty droplets in droplet-based single-cell RNA sequencing data , 2019, Genome Biology.
[18] Evan Z. Macosko,et al. An integrated transcriptomic and epigenomic atlas of mouse primary motor cortex cell types , 2020, bioRxiv.
[19] G. Feng,et al. Acute brain slice methods for adult and aging animals: application of targeted patch clamp analysis and optogenetics. , 2014, Methods in molecular biology.
[20] C. Koch,et al. A robust ex vivo experimental platform for molecular-genetic dissection of adult human neocortical cell types and circuits , 2018, bioRxiv.
[21] A. M. Lassek,et al. THE HUMAN PYRAMIDAL TRACT: II. A NUMERICAL INVESTIGATION OF THE BETZ CELLS OF THE MOTOR AREA , 1941 .
[22] Phillip A. Richmond,et al. JASPAR 2020: update of the open-access database of transcription factor binding profiles , 2019, Nucleic Acids Res..
[23] S. Linnarsson,et al. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq , 2015, Science.
[24] Richard H Scheuermann,et al. Transcriptomic and morphophysiological evidence for a specialized human cortical GABAergic cell type , 2017, Nature Neuroscience.
[25] Lars E. Borm,et al. Molecular Diversity of Midbrain Development in Mouse, Human, and Stem Cells , 2016, Cell.
[26] Aaron T. L. Lun,et al. Distinguishing cells from empty droplets in droplet-based single-cell RNA sequencing data , 2018 .
[27] Kenneth D Harris,et al. A genuine layer 4 in motor cortex with prototypical synaptic circuit connectivity , 2014, eLife.
[28] D. Lewis,et al. Cluster analysis-based physiological classification and morphological properties of inhibitory neurons in layers 2-3 of monkey dorsolateral prefrontal cortex. , 2005, Journal of neurophysiology.
[29] Christine S. Liu,et al. Nuclei Isolation for SNARE-seq2 v1 , 2020, protocols.io.
[30] William J. Greenleaf,et al. chromVAR: Inferring transcription factor-associated accessibility from single-cell epigenomic data , 2017, Nature Methods.
[31] G. Hu,et al. Electrophysiological and morphological properties of pyramidal and nonpyramidal neurons in the cat motor cortex in vitro , 1996, Neuroscience.
[32] A. Zaitsev,et al. Functional properties of GABA synaptic inputs onto GABA neurons in monkey prefrontal cortex. , 2015, Journal of neurophysiology.
[33] M. Nedergaard,et al. The homeostatic astroglia emerges from evolutionary specialization of neural cells , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.
[34] Brian R. Lee,et al. Toward an integrated classification of neuronal cell types: morphoelectric and transcriptomic characterization of individual GABAergic cortical neurons , 2020, bioRxiv.
[35] Patrick R Hof,et al. Comparative morphology of gigantopyramidal neurons in primary motor cortex across mammals , 2018, The Journal of comparative neurology.
[36] A. Scheibel,et al. Basilar dendrite bundles of giant pyramidal cells. , 1974, Experimental neurology.
[37] Garreck H. Lenz,et al. Enhancer viruses and a transgenic platform for combinatorial cell subclass-specific labeling , 2019 .
[38] A. Cowey,et al. The axo-axonic interneuron in the cerebral cortex of the rat, cat and monkey , 1982, Neuroscience.
[39] Garreck H. Lenz,et al. Prospective, brain-wide labeling of neuronal subclasses with enhancer-driven AAVs , 2019, bioRxiv.
[40] Andrew C. Adey,et al. Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing , 2015, Science.
[41] Shane J. Neph,et al. A comparative encyclopedia of DNA elements in the mouse genome , 2014, Nature.
[42] J. DeFelipe,et al. Microstructure of the neocortex: Comparative aspects , 2002, Journal of neurocytology.
[43] Alexander Kraskov,et al. Large Identified Pyramidal Cells in Macaque Motor and Premotor Cortex Exhibit “Thin Spikes”: Implications for Cell Type Classification , 2011, The Journal of Neuroscience.
[44] A. Juavinett,et al. Specialized Subpopulations of Deep-Layer Pyramidal Neurons in the Neocortex: Bridging Cellular Properties to Functional Consequences , 2018, The Journal of Neuroscience.
[45] G. Feng,et al. Imaging Neuronal Subsets in Transgenic Mice Expressing Multiple Spectral Variants of GFP , 2000, Neuron.
[46] C. Economo,et al. Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen , 1925 .
[47] Robert J. Gumnit. Neurophysiological basis of normal and abnormal motor activities , 1969 .
[48] Trygve E Bakken,et al. Transcriptomic evidence that von Economo neurons are regionally specialized extratelencephalic-projecting excitatory neurons , 2019, Nature Communications.
[49] Vincent A. Traag,et al. From Louvain to Leiden: guaranteeing well-connected communities , 2018, Scientific Reports.
[50] Fabian J Theis,et al. SCANPY: large-scale single-cell gene expression data analysis , 2018, Genome Biology.
[51] Iwona Stepniewska,et al. Multiple divisions of macaque precentral motor cortex identified with neurofilament antibody SMI-32 , 1997, Brain Research.
[52] G. Cooper. The Origin and Evolution of Cells , 2000 .
[53] Christof Koch,et al. Adult Mouse Cortical Cell Taxonomy by Single Cell Transcriptomics , 2016, Nature Neuroscience.
[54] Jon H. Kaas,et al. Mammalian Brains Are Made of These: A Dataset of the Numbers and Densities of Neuronal and Nonneuronal Cells in the Brain of Glires, Primates, Scandentia, Eulipotyphlans, Afrotherians and Artiodactyls, and Their Relationship with Body Mass , 2015, Brain, Behavior and Evolution.
[55] A. M. Lassek. THE PYRAMIDAL TRACT: A STUDY OF RETROGRADE DEGENERATION IN THE MONKEY , 1942 .
[56] Joachim M. Buhmann,et al. The Balanced Accuracy and Its Posterior Distribution , 2010, 2010 20th International Conference on Pattern Recognition.
[57] M. Ronaghi,et al. Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain , 2016, Science.
[58] Howard Y. Chang,et al. Single-cell chromatin accessibility reveals principles of regulatory variation , 2015, Nature.
[59] P. Hof,et al. Stereologic characterization and spatial distribution patterns of Betz cells in the human primary motor cortex. , 2003, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.
[60] R. Lemon. Descending pathways in motor control. , 2008, Annual review of neuroscience.
[61] Trygve E Bakken,et al. Transcriptomic evidence that von Economo neurons are regionally specialized extratelencephalic-projecting excitatory neurons , 2019, bioRxiv.
[62] Francis R. Bach,et al. Harder, Better, Faster, Stronger Convergence Rates for Least-Squares Regression , 2016, J. Mach. Learn. Res..
[63] Bernardo Rudy,et al. Kv3 channels: voltage-gated K+ channels designed for high-frequency repetitive firing , 2001, Trends in Neurosciences.
[64] Hagen U. Tilgner,et al. SynGO: An Evidence-Based, Expert-Curated Knowledge Base for the Synapse , 2019, Neuron.
[65] Aixia Guo,et al. Gene Selection for Cancer Classification using Support Vector Machines , 2014 .
[66] Hanno S Meyer,et al. Cell-type specific properties of pyramidal neurons in neocortex underlying a layout that is modifiable depending on the cortical area. , 2010, Cerebral cortex.
[67] J. Morrison,et al. Neurochemical phenotype of corticocortical connections in the macaque monkey: Quantitative analysis of a subset of neurofilament protein‐immunoreactive projection neurons in frontal, parietal, temporal, and cingulate cortices , 1995, The Journal of comparative neurology.
[68] Justin P Sandoval,et al. Single-cell methylomes identify neuronal subtypes and regulatory elements in mammalian cortex , 2017, Science.
[69] Kun Zhang,et al. High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell , 2019, Nature Biotechnology.
[70] Allan R. Jones,et al. Conserved cell types with divergent features in human versus mouse cortex , 2019, Nature.
[71] Z. Petanjek,et al. Neocortical calretinin neurons in primates: increase in proportion and microcircuitry structure , 2014, Front. Neuroanat..
[72] Erik Sundström,et al. RNA velocity of single cells , 2018, Nature.
[73] E. Evarts. RELATION OF DISCHARGE FREQUENCY TO CONDUCTION VELOCITY IN PYRAMIDAL TRACT NEURONS. , 1965, Journal of neurophysiology.
[74] Bonnie Berger,et al. Efficient integration of heterogeneous single-cell transcriptomes using Scanorama , 2019, Nature Biotechnology.
[75] Allan R. Jones,et al. Transcriptional Architecture of the Primate Neocortex , 2012, Neuron.
[76] C. Geula,et al. Motor neurons are rich in non-phosphorylated neurofilaments: cross-species comparison and alterations in ALS , 2000, Brain Research.
[77] Matthew T. Weirauch,et al. Control of species-dependent cortico-motoneuronal connections underlying manual dexterity , 2017, Science.
[78] D. Attwell,et al. Amyloid β oligomers constrict human capillaries in Alzheimer’s disease via signaling to pericytes , 2019, Science.
[79] Florian Hahne,et al. Visualizing Genomic Data Using Gviz and Bioconductor , 2016, Statistical Genomics.
[80] Conor Fitzpatrick,et al. Simultaneous profiling of 3D genome structure and DNA methylation in single human cells , 2019, Nature Methods.
[81] P. Schwindt,et al. Post‐inhibitory excitation and inhibition in layer V pyramidal neurones from cat sensorimotor cortex. , 1991, The Journal of physiology.
[82] J. Ojemann,et al. Uniquely Hominid Features of Adult Human Astrocytes , 2009, The Journal of Neuroscience.
[83] Justin P Sandoval,et al. Robust single-cell DNA methylome profiling with snmC-seq2 , 2018, Nature Communications.
[84] Allan R. Jones,et al. Shared and distinct transcriptomic cell types across neocortical areas , 2018, Nature.
[85] Anushya Muruganujan,et al. PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools , 2018, Nucleic Acids Res..
[86] Anshul Kundaje,et al. The ENCODE Blacklist: Identification of Problematic Regions of the Genome , 2019, Scientific Reports.
[87] E. Fetz,et al. Control of forelimb muscle activity by populations of corticomotoneuronal and rubromotoneuronal cells. , 1989, Progress in brain research.
[88] S. Nelson,et al. Region-Specific Spike-Frequency Acceleration in Layer 5 Pyramidal Neurons Mediated by Kv1 Subunits , 2008, The Journal of Neuroscience.
[89] Sara Ballouz,et al. Characterizing the replicability of cell types defined by single cell RNA-sequencing data using MetaNeighbor , 2018, Nature Communications.
[90] Tracy M. Yamawaki,et al. Evolution of pallium, hippocampus, and cortical cell types revealed by single-cell transcriptomics in reptiles , 2018, Science.
[91] Trygve E Bakken,et al. Single-nucleus and single-cell transcriptomes compared in matched cortical cell types , 2018, PloS one.
[92] Jason Weston,et al. Gene Selection for Cancer Classification using Support Vector Machines , 2002, Machine Learning.
[93] A. Peters,et al. Some aspects of the morphology of Betz cells in the cerebral cortex of the cat. , 1972, Brain research.
[94] Brian R. Lee,et al. Classification of electrophysiological and morphological neuron types in the mouse visual cortex , 2019, Nature Neuroscience.