Evolution of cellular diversity in primary motor cortex of human, marmoset monkey, and mouse

The primary motor cortex (M1) is essential for voluntary fine motor control and is functionally conserved across mammals. Using high-throughput transcriptomic and epigenomic profiling of over 450,000 single nuclei in human, marmoset monkey, and mouse, we demonstrate a broadly conserved cellular makeup of this region, whose similarity mirrors evolutionary distance and is consistent between the transcriptome and epigenome. The core conserved molecular identity of neuronal and non-neuronal types allowed the generation of a cross-species consensus cell type classification and inference of conserved cell type properties across species. Despite overall conservation, many species specializations were apparent, including differences in cell type proportions, gene expression, DNA methylation, and chromatin state. Few cell type marker genes were conserved across species, providing a short list of candidate genes and regulatory mechanisms responsible for conserved features of homologous cell types, such as the GABAergic chandelier cells. This consensus transcriptomic classification allowed the Patch-seq identification of layer 5 (L5) corticospinal Betz cells in non-human primate and human and characterization of their highly specialized physiology and anatomy. These findings highlight the robust molecular underpinnings of cell type diversity in M1 across mammals and point to the genes and regulatory pathways responsible for the functional identity of cell types and their species-specific adaptations.

Christof Koch | Brian D. Aevermann | Richard H. Scheuermann | Thomas Höllt | Baldur van Lew | Bing Ren | Hongkui Zeng | Aviv Regev | Michael Hawrylycz | Jeroen Eggermont | Jesse Gillis | Hanqing Liu | Joseph R. Ecker | Marmar Moussa | Alexander Dobin | Andrew L. Ko | Song-Lin Ding | Evan Z. Macosko | Patrick R. Hof | Eran A. Mukamel | Ed S. Lein | Kun Zhang | Stephan Fischer | Hector Corrada Bravo | Peter V. Kharchenko | Jayaram Kancherla | Joshua Orvis | Seth A. Ament | Ronna Hertzano | Guoping Feng | Qiwen Hu | Gregory D. Horwitz | Steven A. McCarroll | Bosiljka Tasic | Trygve E Bakken | Anup Mahurkar | Staci A. Sorensen | Blue B. Lake | Rachel Dalley | Kimberly Smith | Jonathan T. Ting | Fenna M. Krienen | Zizhen Yao | Trygve E. Bakken | Rebecca D. Hodge | Anna Marie Yanny | Brian E. Kalmbach | Matthew Kroll | Michael Tieu | Melissa Goldman | Megan Crow | William J. Spain | Sten Linnarsson | Sebastian Preissl | Xiaomeng Hou | Fangming Xie | Dinh Diep | Olivier Poirion | C. Koch | S. Linnarsson | A. Regev | G. Feng | S. Mccarroll | M. Hawrylycz | Hongkui Zeng | Bosiljka Tasic | Zizhen Yao | Lucas T. Graybuck | Kimberly A. Smith | Darren Bertagnolli | J. Goldy | Jeremy A. Miller | K. Lathia | Christine Rimorin | Michael Tieu | Tamara Casper | Matthew Kroll | N. Dee | T. Daigle | E. Lein | Stephan Fischer | H. Bravo | R. Scheuermann | P. Hof | E. Macosko | Melissa Goldman | Anup Mahurkar | B. Ren | P. Kharchenko | G. Horwitz | A. Dobin | J. Ecker | W. Spain | Nongluk Plongthongkum | Kun Zhang | C. Luo | Joseph R. Nery | E. Mukamel | Jayaram Kancherla | A. Ko | D. Diep | J. Ting | J. Chun | S. Ding | R. Dalley | Joshua Orvis | Owen R. White | J. Gillis | T. Höllt | B. Lelieveldt | B. Lake | Angeline C. Rivkin | Rosa G. Castanon | S. Preissl | Rongxin Fang | Nikolas L. Jorstad | C. Keene | R. Hertzano | S. Ament | M. Crow | Olivier B. Poirion | Brian R. Herb | R. Hodge | J. Eggermont | B. Aevermann | Saroja Somasundaram | Xiaomeng Hou | Y. Li | B. Kalmbach | Kirsten Crichton | D. McMillen | J. Sulc | A. Torkelson | Herman Tung | Hanqing Liu | Fangming Xie | Andrew I. Aldridge | Anna Bartlett | Qiwen Hu | Thanh Pham | Xinxin Wang | A. Yanny | K. Siletti | Marmar Moussa | Scott F. Owen | N. Dembrow | Adriana E. Sedeño-Cortés | C. Dirk Keene | Tanya L. Daigle | Nick Dee | Nongluk Plongthongkum | Nora M. Reed | Christine S. Liu | Anna Bartlett | Jerold Chun | W. Romanow | Darren Bertagnolli | Jeff Goldy | Chongyuan Luo | Wei Tian | Tamara Casper | Kirsten Crichton | Nikolai Dembrow | Weixiu Dong | Rongxin Fang | Kanan Lathia | Yang Eric Li | Delissa McMillen | Scott Owen | Carter R. Palmer | Thanh Pham | Christine Rimorin | Angeline Rivkin | William J. Romanow | Kimberly Siletti | Saroja Somasundaram | Josef Sulc | Amy Torkelson | Herman Tung | Xinxin Wang | Renee Zhang | Boudewijn P. Lelieveldt | Wei-ping Tian | Weixiu Dong | Renee Zhang | A. Mahurkar | O. White | R. Castanon | S. Sorensen | H. C. Bravo

[1]  Andrew C. Adey,et al.  Cicero Predicts cis-Regulatory DNA Interactions from Single-Cell Chromatin Accessibility Data. , 2018, Molecular cell.

[2]  Sean C. Bendall,et al.  Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis , 2015, Cell.

[3]  Fernando Nogueira,et al.  Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning , 2016, J. Mach. Learn. Res..

[4]  Z. J. Huang,et al.  Transcriptional Architecture of Synaptic Communication Delineates GABAergic Neuron Identity , 2017, Cell.

[5]  V. Gradinaru,et al.  Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems , 2017, Nature Neuroscience.

[6]  D. Dickel,et al.  Spatiotemporal DNA Methylome Dynamics of the Developing Mammalian Fetus , 2017, bioRxiv.

[7]  A. Kolodkin,et al.  The RacGAP β2-Chimaerin Selectively Mediates Axonal Pruning in the Hippocampus , 2012, Cell.

[8]  J. Colombo The interlaminar glia: from serendipity to hypothesis , 2016, Brain Structure and Function.

[9]  Tae Kyung Kim,et al.  Layer-specific chromatin accessibility landscapes reveal regulatory networks in adult mouse visual cortex , 2017, eLife.

[10]  Timothy L. Bailey,et al.  Motif Enrichment Analysis: a unified framework and an evaluation on ChIP data , 2010, BMC Bioinformatics.

[11]  David Kulp,et al.  Innovations in Primate Interneuron Repertoire , 2019, bioRxiv.

[12]  Paul J. Hoffman,et al.  Comprehensive Integration of Single-Cell Data , 2018, Cell.

[13]  Jesse R. Dixon,et al.  Single nucleus multi-omics links human cortical cell regulatory genome diversity to disease risk variants , 2019, bioRxiv.

[14]  Brian R. Lee,et al.  Human cortical expansion involves diversification and specialization of supragranular intratelencephalic-projecting neurons , 2020, bioRxiv.

[15]  P. Kharchenko,et al.  Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain , 2017, Nature Biotechnology.

[16]  G. Wagner,et al.  The origin and evolution of cell types , 2016, Nature Reviews Genetics.

[17]  Samantha Riesenfeld,et al.  EmptyDrops: distinguishing cells from empty droplets in droplet-based single-cell RNA sequencing data , 2019, Genome Biology.

[18]  Evan Z. Macosko,et al.  An integrated transcriptomic and epigenomic atlas of mouse primary motor cortex cell types , 2020, bioRxiv.

[19]  G. Feng,et al.  Acute brain slice methods for adult and aging animals: application of targeted patch clamp analysis and optogenetics. , 2014, Methods in molecular biology.

[20]  C. Koch,et al.  A robust ex vivo experimental platform for molecular-genetic dissection of adult human neocortical cell types and circuits , 2018, bioRxiv.

[21]  A. M. Lassek,et al.  THE HUMAN PYRAMIDAL TRACT: II. A NUMERICAL INVESTIGATION OF THE BETZ CELLS OF THE MOTOR AREA , 1941 .

[22]  Phillip A. Richmond,et al.  JASPAR 2020: update of the open-access database of transcription factor binding profiles , 2019, Nucleic Acids Res..

[23]  S. Linnarsson,et al.  Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq , 2015, Science.

[24]  Richard H Scheuermann,et al.  Transcriptomic and morphophysiological evidence for a specialized human cortical GABAergic cell type , 2017, Nature Neuroscience.

[25]  Lars E. Borm,et al.  Molecular Diversity of Midbrain Development in Mouse, Human, and Stem Cells , 2016, Cell.

[26]  Aaron T. L. Lun,et al.  Distinguishing cells from empty droplets in droplet-based single-cell RNA sequencing data , 2018 .

[27]  Kenneth D Harris,et al.  A genuine layer 4 in motor cortex with prototypical synaptic circuit connectivity , 2014, eLife.

[28]  D. Lewis,et al.  Cluster analysis-based physiological classification and morphological properties of inhibitory neurons in layers 2-3 of monkey dorsolateral prefrontal cortex. , 2005, Journal of neurophysiology.

[29]  Christine S. Liu,et al.  Nuclei Isolation for SNARE-seq2 v1 , 2020, protocols.io.

[30]  William J. Greenleaf,et al.  chromVAR: Inferring transcription factor-associated accessibility from single-cell epigenomic data , 2017, Nature Methods.

[31]  G. Hu,et al.  Electrophysiological and morphological properties of pyramidal and nonpyramidal neurons in the cat motor cortex in vitro , 1996, Neuroscience.

[32]  A. Zaitsev,et al.  Functional properties of GABA synaptic inputs onto GABA neurons in monkey prefrontal cortex. , 2015, Journal of neurophysiology.

[33]  M. Nedergaard,et al.  The homeostatic astroglia emerges from evolutionary specialization of neural cells , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[34]  Brian R. Lee,et al.  Toward an integrated classification of neuronal cell types: morphoelectric and transcriptomic characterization of individual GABAergic cortical neurons , 2020, bioRxiv.

[35]  Patrick R Hof,et al.  Comparative morphology of gigantopyramidal neurons in primary motor cortex across mammals , 2018, The Journal of comparative neurology.

[36]  A. Scheibel,et al.  Basilar dendrite bundles of giant pyramidal cells. , 1974, Experimental neurology.

[37]  Garreck H. Lenz,et al.  Enhancer viruses and a transgenic platform for combinatorial cell subclass-specific labeling , 2019 .

[38]  A. Cowey,et al.  The axo-axonic interneuron in the cerebral cortex of the rat, cat and monkey , 1982, Neuroscience.

[39]  Garreck H. Lenz,et al.  Prospective, brain-wide labeling of neuronal subclasses with enhancer-driven AAVs , 2019, bioRxiv.

[40]  Andrew C. Adey,et al.  Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing , 2015, Science.

[41]  Shane J. Neph,et al.  A comparative encyclopedia of DNA elements in the mouse genome , 2014, Nature.

[42]  J. DeFelipe,et al.  Microstructure of the neocortex: Comparative aspects , 2002, Journal of neurocytology.

[43]  Alexander Kraskov,et al.  Large Identified Pyramidal Cells in Macaque Motor and Premotor Cortex Exhibit “Thin Spikes”: Implications for Cell Type Classification , 2011, The Journal of Neuroscience.

[44]  A. Juavinett,et al.  Specialized Subpopulations of Deep-Layer Pyramidal Neurons in the Neocortex: Bridging Cellular Properties to Functional Consequences , 2018, The Journal of Neuroscience.

[45]  G. Feng,et al.  Imaging Neuronal Subsets in Transgenic Mice Expressing Multiple Spectral Variants of GFP , 2000, Neuron.

[46]  C. Economo,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen , 1925 .

[47]  Robert J. Gumnit Neurophysiological basis of normal and abnormal motor activities , 1969 .

[48]  Trygve E Bakken,et al.  Transcriptomic evidence that von Economo neurons are regionally specialized extratelencephalic-projecting excitatory neurons , 2019, Nature Communications.

[49]  Vincent A. Traag,et al.  From Louvain to Leiden: guaranteeing well-connected communities , 2018, Scientific Reports.

[50]  Fabian J Theis,et al.  SCANPY: large-scale single-cell gene expression data analysis , 2018, Genome Biology.

[51]  Iwona Stepniewska,et al.  Multiple divisions of macaque precentral motor cortex identified with neurofilament antibody SMI-32 , 1997, Brain Research.

[52]  G. Cooper The Origin and Evolution of Cells , 2000 .

[53]  Christof Koch,et al.  Adult Mouse Cortical Cell Taxonomy by Single Cell Transcriptomics , 2016, Nature Neuroscience.

[54]  Jon H. Kaas,et al.  Mammalian Brains Are Made of These: A Dataset of the Numbers and Densities of Neuronal and Nonneuronal Cells in the Brain of Glires, Primates, Scandentia, Eulipotyphlans, Afrotherians and Artiodactyls, and Their Relationship with Body Mass , 2015, Brain, Behavior and Evolution.

[55]  A. M. Lassek THE PYRAMIDAL TRACT: A STUDY OF RETROGRADE DEGENERATION IN THE MONKEY , 1942 .

[56]  Joachim M. Buhmann,et al.  The Balanced Accuracy and Its Posterior Distribution , 2010, 2010 20th International Conference on Pattern Recognition.

[57]  M. Ronaghi,et al.  Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain , 2016, Science.

[58]  Howard Y. Chang,et al.  Single-cell chromatin accessibility reveals principles of regulatory variation , 2015, Nature.

[59]  P. Hof,et al.  Stereologic characterization and spatial distribution patterns of Betz cells in the human primary motor cortex. , 2003, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[60]  R. Lemon Descending pathways in motor control. , 2008, Annual review of neuroscience.

[61]  Trygve E Bakken,et al.  Transcriptomic evidence that von Economo neurons are regionally specialized extratelencephalic-projecting excitatory neurons , 2019, bioRxiv.

[62]  Francis R. Bach,et al.  Harder, Better, Faster, Stronger Convergence Rates for Least-Squares Regression , 2016, J. Mach. Learn. Res..

[63]  Bernardo Rudy,et al.  Kv3 channels: voltage-gated K+ channels designed for high-frequency repetitive firing , 2001, Trends in Neurosciences.

[64]  Hagen U. Tilgner,et al.  SynGO: An Evidence-Based, Expert-Curated Knowledge Base for the Synapse , 2019, Neuron.

[65]  Aixia Guo,et al.  Gene Selection for Cancer Classification using Support Vector Machines , 2014 .

[66]  Hanno S Meyer,et al.  Cell-type specific properties of pyramidal neurons in neocortex underlying a layout that is modifiable depending on the cortical area. , 2010, Cerebral cortex.

[67]  J. Morrison,et al.  Neurochemical phenotype of corticocortical connections in the macaque monkey: Quantitative analysis of a subset of neurofilament protein‐immunoreactive projection neurons in frontal, parietal, temporal, and cingulate cortices , 1995, The Journal of comparative neurology.

[68]  Justin P Sandoval,et al.  Single-cell methylomes identify neuronal subtypes and regulatory elements in mammalian cortex , 2017, Science.

[69]  Kun Zhang,et al.  High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell , 2019, Nature Biotechnology.

[70]  Allan R. Jones,et al.  Conserved cell types with divergent features in human versus mouse cortex , 2019, Nature.

[71]  Z. Petanjek,et al.  Neocortical calretinin neurons in primates: increase in proportion and microcircuitry structure , 2014, Front. Neuroanat..

[72]  Erik Sundström,et al.  RNA velocity of single cells , 2018, Nature.

[73]  E. Evarts RELATION OF DISCHARGE FREQUENCY TO CONDUCTION VELOCITY IN PYRAMIDAL TRACT NEURONS. , 1965, Journal of neurophysiology.

[74]  Bonnie Berger,et al.  Efficient integration of heterogeneous single-cell transcriptomes using Scanorama , 2019, Nature Biotechnology.

[75]  Allan R. Jones,et al.  Transcriptional Architecture of the Primate Neocortex , 2012, Neuron.

[76]  C. Geula,et al.  Motor neurons are rich in non-phosphorylated neurofilaments: cross-species comparison and alterations in ALS , 2000, Brain Research.

[77]  Matthew T. Weirauch,et al.  Control of species-dependent cortico-motoneuronal connections underlying manual dexterity , 2017, Science.

[78]  D. Attwell,et al.  Amyloid β oligomers constrict human capillaries in Alzheimer’s disease via signaling to pericytes , 2019, Science.

[79]  Florian Hahne,et al.  Visualizing Genomic Data Using Gviz and Bioconductor , 2016, Statistical Genomics.

[80]  Conor Fitzpatrick,et al.  Simultaneous profiling of 3D genome structure and DNA methylation in single human cells , 2019, Nature Methods.

[81]  P. Schwindt,et al.  Post‐inhibitory excitation and inhibition in layer V pyramidal neurones from cat sensorimotor cortex. , 1991, The Journal of physiology.

[82]  J. Ojemann,et al.  Uniquely Hominid Features of Adult Human Astrocytes , 2009, The Journal of Neuroscience.

[83]  Justin P Sandoval,et al.  Robust single-cell DNA methylome profiling with snmC-seq2 , 2018, Nature Communications.

[84]  Allan R. Jones,et al.  Shared and distinct transcriptomic cell types across neocortical areas , 2018, Nature.

[85]  Anushya Muruganujan,et al.  PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools , 2018, Nucleic Acids Res..

[86]  Anshul Kundaje,et al.  The ENCODE Blacklist: Identification of Problematic Regions of the Genome , 2019, Scientific Reports.

[87]  E. Fetz,et al.  Control of forelimb muscle activity by populations of corticomotoneuronal and rubromotoneuronal cells. , 1989, Progress in brain research.

[88]  S. Nelson,et al.  Region-Specific Spike-Frequency Acceleration in Layer 5 Pyramidal Neurons Mediated by Kv1 Subunits , 2008, The Journal of Neuroscience.

[89]  Sara Ballouz,et al.  Characterizing the replicability of cell types defined by single cell RNA-sequencing data using MetaNeighbor , 2018, Nature Communications.

[90]  Tracy M. Yamawaki,et al.  Evolution of pallium, hippocampus, and cortical cell types revealed by single-cell transcriptomics in reptiles , 2018, Science.

[91]  Trygve E Bakken,et al.  Single-nucleus and single-cell transcriptomes compared in matched cortical cell types , 2018, PloS one.

[92]  Jason Weston,et al.  Gene Selection for Cancer Classification using Support Vector Machines , 2002, Machine Learning.

[93]  A. Peters,et al.  Some aspects of the morphology of Betz cells in the cerebral cortex of the cat. , 1972, Brain research.

[94]  Brian R. Lee,et al.  Classification of electrophysiological and morphological neuron types in the mouse visual cortex , 2019, Nature Neuroscience.