Analysis of Practical Identifiability of a Viral Infection Model

Mathematical modelling approaches have granted a significant contribution to life sciences and beyond to understand experimental results. However, incomplete and inadequate assessments in parameter estimation practices hamper the parameter reliability, and consequently the insights that ultimately could arise from a mathematical model. To keep the diligent works in modelling biological systems from being mistrusted, potential sources of error must be acknowledged. Employing a popular mathematical model in viral infection research, existing means and practices in parameter estimation are exemplified. Numerical results show that poor experimental data is a main source that can lead to erroneous parameter estimates despite the use of innovative parameter estimation algorithms. Arbitrary choices of initial conditions as well as data asynchrony distort the parameter estimates but are often overlooked in modelling studies. This work stresses the existence of several sources of error buried in reports of modelling biological systems, voicing the need for assessing the sources of error, consolidating efforts in solving the immediate difficulties, and possibly reconsidering the use of mathematical modelling to quantify experimental data.

[1]  Ursula Klingmüller,et al.  Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood , 2009, Bioinform..

[2]  Michael Meyer-Hermann,et al.  Modeling Influenza Virus Infection: A Roadmap for Influenza Research , 2015, Viruses.

[3]  N LeNovère Quantitative and logic modelling of molecular and gene networks. , 2015 .

[4]  Jorge Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[5]  M. Girolami,et al.  Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[6]  James M. McCaw,et al.  Reducing Uncertainty in Within-Host Parameter Estimates of Influenza Infection by Measuring Both Infectious and Total Viral Load , 2013, PloS one.

[7]  Xiaohua Xia,et al.  Identifiability of nonlinear systems with application to HIV/AIDS models , 2003, IEEE Trans. Autom. Control..

[8]  Jiguo Cao,et al.  Parameter estimation for differential equations: a generalized smoothing approach , 2007 .

[9]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[10]  Minge Xie,et al.  Bootlier-plot: Bootstrap based outlier detection plot , 2003 .

[11]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[12]  Philipp M. Altrock,et al.  The mathematics of cancer: integrating quantitative models , 2015, Nature Reviews Cancer.

[13]  Hulin Wu,et al.  Parameter Estimation for Differential Equation Models Using a Framework of Measurement Error in Regression Models , 2008, Journal of the American Statistical Association.

[14]  S. Wood Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models , 2011 .

[15]  Alan S. Perelson,et al.  Modelling hepatitis C therapy—predicting effects of treatment , 2015, Nature Reviews Gastroenterology &Hepatology.

[16]  Denise E. Kirschner,et al.  Using Mathematics to Understand HIV Immune Dynamics , 1997 .

[17]  C. Tomlin,et al.  Biology by numbers: mathematical modelling in developmental biology , 2007, Nature Reviews Genetics.

[18]  Javad Behboodian,et al.  Bmc Medical Research Methodology Open Access Sequential Boundaries Approach in Clinical Trials with Unequal Allocation Ratios , 2022 .

[19]  H. Künsch,et al.  Practical identifiability analysis of large environmental simulation models , 2001 .

[20]  Guy Boivin,et al.  The H275Y Neuraminidase Mutation of the Pandemic A/H1N1 Influenza Virus Lengthens the Eclipse Phase and Reduces Viral Output of Infected Cells, Potentially Compromising Fitness in Ferrets , 2012, Journal of Virology.

[21]  Andreas Handel,et al.  Towards a quantitative understanding of the within-host dynamics of influenza A infections , 2010, Journal of The Royal Society Interface.

[22]  B. Hogan,et al.  Ciliated epithelial cell lifespan in the mouse trachea and lung. , 2008, American journal of physiology. Lung cellular and molecular physiology.

[23]  Antonio Vicino,et al.  Identification of a branching process model for adaptive immune response , 2013, 52nd IEEE Conference on Decision and Control.

[24]  Esteban A. Hernandez-Vargas,et al.  Identifiability Challenges in Mathematical Models of Viral Infectious Diseases , 2015 .

[25]  Pu Li,et al.  Identification of parameter correlations for parameter estimation in dynamic biological models , 2013, BMC Systems Biology.

[26]  Haihong Zhu,et al.  Parameter Identifiability and Estimation of HIV/AIDS Dynamic Models , 2008, Bulletin of mathematical biology.

[27]  Neil Gershenfeld,et al.  The nature of mathematical modeling , 1998 .

[28]  T. Ross,et al.  Impaired immune responses in the lungs of aged mice following influenza infection , 2009, Respiratory Research.

[29]  B. Tamm International Federation of Automatic Control , 1992, Concise Encyclopedia of Modelling & Simulation.

[30]  Alan S. Perelson,et al.  Effects of Aging on Influenza Virus Infection Dynamics , 2014, Journal of Virology.

[31]  V De Gruttola,et al.  Estimation of HIV dynamic parameters. , 1998, Statistics in medicine.

[32]  Maksat Ashyraliyev,et al.  Systems biology: parameter estimation for biochemical models , 2009, The FEBS journal.

[33]  Andreas Handel,et al.  A review of mathematical models of influenza A infections within a host or cell culture: lessons learned and challenges ahead , 2011, BMC public health.

[34]  Esteban A. Hernandez-Vargas,et al.  Oseltamivir PK/PD Modeling and Simulation to Evaluate Treatment Strategies against Influenza-Pneumococcus Coinfection , 2016, Front. Cell. Infect. Microbiol..

[35]  Alan S. Perelson,et al.  Modeling Within-Host Dynamics of Influenza Virus Infection Including Immune Responses , 2012, PLoS Comput. Biol..

[36]  Guy Boivin,et al.  Assessing the In Vitro Fitness of an Oseltamivir-Resistant Seasonal A/H1N1 Influenza Strain Using a Mathematical Model , 2011, PloS one.

[37]  Van Kinh Nguyen,et al.  Hierarchical effects of pro-inflammatory cytokines on the post-influenza susceptibility to pneumococcal coinfection , 2016, Scientific Reports.

[38]  Xiaohua Xia,et al.  On Identifiability of Nonlinear ODE Models and Applications in Viral Dynamics , 2011, SIAM Rev..

[39]  R. Paul Duffin,et al.  Mathematical Models of the Complete Course of HIV Infection and AIDS , 2002 .

[40]  Christopher R. Myers,et al.  Universally Sloppy Parameter Sensitivities in Systems Biology Models , 2007, PLoS Comput. Biol..

[41]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[42]  Paola Annoni,et al.  Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index , 2010, Comput. Phys. Commun..

[43]  A. Gelman,et al.  Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .

[44]  Alaa Althubaiti,et al.  Non-Gaussian Berkson errors in bioassay , 2016, Statistical methods in medical research.

[45]  J. Banga,et al.  Structural Identifiability of Systems Biology Models: A Critical Comparison of Methods , 2011, PloS one.

[46]  Klaus Nordhausen,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition by Trevor Hastie, Robert Tibshirani, Jerome Friedman , 2009 .

[47]  Udo Reichl,et al.  Mathematical model of influenza A virus production in large-scale microcarrier culture. , 2005, Biotechnology and bioengineering.

[48]  B. Efron,et al.  Assessing the accuracy of the maximum likelihood estimator: Observed versus expected Fisher information , 1978 .

[49]  Michael Meyer-Hermann,et al.  Ebola virus infection modeling and identifiability problems , 2015, Front. Microbiol..

[50]  Fernando De la Torre,et al.  Robust Regression , 2016, IEEE Trans. Pattern Anal. Mach. Intell..

[51]  D. Commenges,et al.  Estimation of dynamical model parameters taking into account undetectable marker values , 2006, BMC medical research methodology.

[52]  Hana M. Dobrovolny,et al.  Assessing Mathematical Models of Influenza Infections Using Features of the Immune Response , 2013, PloS one.

[53]  Alan S. Perelson,et al.  Effect of 1918 PB1-F2 Expression on Influenza A Virus Infection Kinetics , 2011, PLoS Comput. Biol..

[54]  Jacob K. White,et al.  Convergence in parameters and predictions using computational experimental design , 2013, Interface Focus.

[55]  Gunnar Cedersund,et al.  Prediction Uncertainty Estimation Despite Unidentifiability: An Overview of Recent Developments , 2016 .

[56]  David Ardia,et al.  DEoptim: An R Package for Global Optimization by Differential Evolution , 2009 .

[57]  Udo Reichl,et al.  Multiscale Modeling of Influenza A Virus Infection Supports the Development of Direct-Acting Antivirals , 2013, PLoS Comput. Biol..

[58]  David B. Dunson,et al.  Bayesian data analysis, third edition , 2013 .

[59]  A. Perelson,et al.  Kinetics of Influenza A Virus Infection in Humans , 2006, Journal of Virology.

[60]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[61]  I. Sobola,et al.  Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[62]  Richard H Middleton,et al.  Modeling the three stages in HIV infection. , 2013, Journal of theoretical biology.

[63]  J. Rosenthal,et al.  Optimal scaling for various Metropolis-Hastings algorithms , 2001 .

[64]  N. Novère Quantitative and logic modelling of molecular and gene networks , 2015, Nature Reviews Genetics.

[65]  A. Perelson,et al.  Influenza A virus infection kinetics: quantitative data and models , 2011, Wiley interdisciplinary reviews. Systems biology and medicine.

[66]  Heikki Haario,et al.  DRAM: Efficient adaptive MCMC , 2006, Stat. Comput..

[67]  Rustom Antia,et al.  Understanding the Slow Depletion of Memory CD4+ T Cells in HIV Infection , 2007, PLoS medicine.

[68]  Michael R. Kosorok,et al.  Robust semiparametric M-estimation and the weighted bootstrap , 2005 .

[69]  Jens Timmer,et al.  Joining forces of Bayesian and frequentist methodology: a study for inference in the presence of non-identifiability , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[70]  J. Simonoff Smoothing Methods in Statistics , 1998 .

[71]  D.Sc. Joseph Berkson Are there Two Regressions , 1950 .