Learning Shape: Optimal Models for Analysing Natural Variability

Statistical shape models have wide application in biomedical image analysis – both for image segmentation and morphometry. This thesis addresses an important issue in shape modelling, that of establishing correspondence between a set of shapes. Current methods involve either manual annotation of the data (the current ‘gold standard’) or establishing correspondences in an essentially arbitrary manner. The thesis establishes a principled framework for establishing correspondences completely automatically by treating this as part of the learning process. Ideas from information theory are used to develop an objective function that measures the utility of a model, based on the minimum description length principle. Model-building can then be posed as the problem of finding the set of correspondences that optimise the objective function. Efficientmethods are presented for manipulating correspondences via re-parameterisation and for optimising the objective function. Practical results are presented for both 2D and 3D training sets of shapes from medical images. A quantitative evaluation shows that the resulting models have better compactness, generalisation ability and specificity than those obtained using existing methods. A 3D model is used in a practical application to explore the possibility of using 3Dmagnetic resonance images to detect differences in shape between the hippocampi of schizophrenic patients and normal controls. A more significant effect is demonstrated using the newmethod than that obtained using the best previous approach.

[1]  Christopher J. Taylor,et al.  Using Local Geometry to Build 3D Sulcal Models , 1999, IPMI.

[2]  Timothy F. Cootes,et al.  An Information Theoretic Approach to Statistical Shape Modelling , 2001, BMVC.

[3]  Timothy F. Cootes,et al.  Building optimal 2D statistical shape models , 2003, Image Vis. Comput..

[4]  Christopher J. Taylor,et al.  Automatic Landmark Generation for Point Distribution Models , 1994, BMVC.

[5]  B. Geiger Three-dimensional modeling of human organs and its application to diagnosis and surgical planning , 1993 .

[6]  M. Kramer Nonlinear principal component analysis using autoassociative neural networks , 1991 .

[7]  Daniel Rueckert,et al.  Nonrigid registration using free-form deformations: application to breast MR images , 1999, IEEE Transactions on Medical Imaging.

[8]  Timothy F. Cootes,et al.  Combining point distribution models with shape models based on finite element analysis , 1994, Image Vis. Comput..

[9]  J. Waterton,et al.  Reduced animal use in efficacy testing in disease models with use of sequential experimental designs. , 2000 .

[10]  R. McCarley,et al.  MRI anatomy of schizophrenia , 1999, Biological Psychiatry.

[11]  Karl J. Friston,et al.  Voxel-Based Morphometry—The Methods , 2000, NeuroImage.

[12]  Dimitris N. Metaxas,et al.  Dynamic 3D models with local and global deformations: deformable superquadrics , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[13]  C J Taylor,et al.  The use of active shape models for making thickness measurements of articular cartilage from MR images , 1997, Magnetic resonance in medicine.

[14]  D L Hill,et al.  Automated three-dimensional registration of magnetic resonance and positron emission tomography brain images by multiresolution optimization of voxel similarity measures. , 1997, Medical physics.

[15]  Alejandro F. Frangi,et al.  Automatic 3D ASM Construction via Atlas-Based Landmarking and Volumetric Elastic Registration , 2001, IPMI.

[16]  Ruzena Bajcsy,et al.  Multiresolution elastic matching , 1989, Comput. Vis. Graph. Image Process..

[17]  William H. Press,et al.  Numerical Recipes in C, 2nd Edition , 1992 .

[18]  David C. Hogg,et al.  Learning Flexible Models from Image Sequences , 1994, ECCV.

[19]  Timothy F. Cootes,et al.  Statistical models of face images - improving specificity , 1998, Image Vis. Comput..

[20]  James S. Duncan,et al.  Parametrically deformable contour models , 1989, Proceedings CVPR '89: IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[21]  Christopher J. Taylor,et al.  Model-Based Interpretation of 3D Medical Images , 1993, BMVC.

[22]  Michael I. Miller,et al.  Volumetric transformation of brain anatomy , 1997, IEEE Transactions on Medical Imaging.

[23]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  O. Faugeras,et al.  Statistical shape influence in geodesic active contours , 2002, 5th IEEE EMBS International Summer School on Biomedical Imaging, 2002..

[25]  Alejandro F. Frangi,et al.  Automatic Construction of 3D Statistical Deformation Models Using Non-rigid Registration , 2001, MICCAI.

[26]  Colin Studholme,et al.  An overlap invariant entropy measure of 3D medical image alignment , 1999, Pattern Recognit..

[27]  Cristian Lorenz,et al.  Generation of Point-Based 3D Statistical Shape Models for Anatomical Objects , 2000, Comput. Vis. Image Underst..

[28]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[29]  W. Eric L. Grimson,et al.  Small Sample Size Learning for Shape Analysis of Anatomical Structures , 2000, MICCAI.

[30]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[31]  Max A. Viergever,et al.  A survey of medical image registration , 1998, Medical Image Anal..

[32]  Paul M. Thompson,et al.  Anatomically Driven Strategies for High-Dimensional Brain Image Warping and Pathology Detection , 1999 .

[33]  Guido Gerig,et al.  Duration of illness and treatment effects on hippocampal volume in male patients with schizophrenia , 2005, British Journal of Psychiatry.

[34]  Nicholas Ayache,et al.  Fast segmentation, tracking, and analysis of deformable objects , 1993, 1993 (4th) International Conference on Computer Vision.

[35]  Kanti V. Mardia,et al.  Statistics of Directional Data , 1972 .

[36]  Timothy F. Cootes,et al.  Data Driven Refinement of Active Shape Model Search , 1996, BMVC.

[37]  P. McKenna,et al.  Schizophrenia – a Brain Disease? a Critical Review of Structural and Functional Cerebral Abnormality in the Disorder , 1995, British Journal of Psychiatry.

[38]  Kanti V. Mardia,et al.  The Statistical Analysis of Shape , 1998 .

[39]  Christopher J. Taylor,et al.  Construction of 3D Shape Models of Femoral Articular Cartilage Using Harmonic Maps , 2000, MICCAI.

[40]  Fred L. Bookstein,et al.  Landmark methods for forms without landmarks: morphometrics of group differences in outline shape , 1997, Medical Image Anal..

[41]  L Sirovich,et al.  Low-dimensional procedure for the characterization of human faces. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[42]  Anil K. Jain,et al.  Automatic Construction of 2D Shape Models , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[43]  Timothy F. Cootes,et al.  A Minimum Description Length Approach to Statistical Shape Modelling , 2001 .

[44]  Alan L. Yuille,et al.  Deformable Templates for Feature Extraction from Medical Images , 1990, ECCV.

[45]  Timothy F. Cootes,et al.  Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..

[46]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[47]  Nicholas I. Fisher,et al.  Statistical Analysis of Circular Data , 1993 .

[48]  Demetri Terzopoulos,et al.  Deformable models in medical image analysis: a survey , 1996, Medical Image Anal..

[49]  D. Hill,et al.  Medical image registration , 2001, Physics in medicine and biology.

[50]  M W Vannier,et al.  Three-dimensional hippocampal MR morphometry with high-dimensional transformation of a neuroanatomic atlas. , 1997, Radiology.

[51]  Jorma Rissanen,et al.  Stochastic Complexity in Statistical Inquiry , 1989, World Scientific Series in Computer Science.

[52]  Alex Pentland,et al.  Closed-form solutions for physically-based shape modeling and recognition , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[53]  C J Taylor,et al.  An automated method for assessing routine radiographs of patients with total hip replacements , 1997, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[54]  Guido Gerig,et al.  Segmentation of 2-D and 3-D objects from MRI volume data using constrained elastic deformations of flexible Fourier contour and surface models , 1996, Medical Image Anal..

[55]  Anand Rangarajan,et al.  The Softassign Procrustes Matching Algorithm , 1997, IPMI.

[56]  David C. Hogg,et al.  An Adaptive Eigenshape Model , 1995, BMVC.

[57]  Christopher J. Taylor,et al.  Model-based image interpretation using genetic algorithms , 1992, Image Vis. Comput..

[58]  Richard Szeliski,et al.  Matching 3-D anatomical surfaces with non-rigid deformations using octree-splines , 1993, Proceedings of IEEE Workshop on Biomedical Image Analysis.

[59]  Timothy F. Cootes,et al.  3D Statistical Shape Models Using Direct Optimisation of Description Length , 2002, ECCV.

[60]  Alex Pentland,et al.  Closed-Form Solutions for Physically Based Shape Modeling and Recognition , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[61]  Christopher J. Taylor,et al.  Automatic construction of eigenshape models by direct optimization , 1998, Medical Image Anal..

[62]  Joydeep Ghosh,et al.  A Unified Model for Probabilistic Principal Surfaces , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[63]  R. Murray,et al.  Meta-analysis of regional brain volumes in schizophrenia. , 2000, The American journal of psychiatry.

[64]  Christopher J. Taylor,et al.  Automatic Construction of Eigenshape Models by Genetic Algorithm , 1997, IPMI.

[65]  Ian Craw,et al.  Face Recognition by Computer , 1992, BMVC.

[66]  H. C. Longuet-Higgins,et al.  An algorithm for associating the features of two images , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[67]  Gábor Székely,et al.  Parameterization of closed surfaces for parametric surface description , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[68]  Douglas W. Jones,et al.  Shape analysis of brain ventricles using SPHARM , 2001, Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA 2001).

[69]  D'arcy W. Thompson On growth and form i , 1943 .

[70]  Andrew R. Webb,et al.  Statistical Pattern Recognition , 1999 .

[71]  Milan Sonka,et al.  Image Processing, Analysis and Machine Vision , 1993, Springer US.

[72]  Alan L. Yuille,et al.  Feature extraction from faces using deformable templates , 2004, International Journal of Computer Vision.

[73]  Guido Gerig,et al.  Elastic model-based segmentation of 3-D neuroradiological data sets , 1999, IEEE Transactions on Medical Imaging.

[74]  J. Rissanen A UNIVERSAL PRIOR FOR INTEGERS AND ESTIMATION BY MINIMUM DESCRIPTION LENGTH , 1983 .

[75]  Demetri Terzopoulos,et al.  Topologically adaptable snakes , 1995, Proceedings of IEEE International Conference on Computer Vision.

[76]  David J. Hand,et al.  Discrimination and Classification , 1982 .

[77]  Nicholas Ayache,et al.  Tracking Points on Deformable Objects Using Curvature Information , 1992, ECCV.

[78]  Guido Gerig,et al.  Parametrization of Closed Surfaces for 3-D Shape Description , 1995, Comput. Vis. Image Underst..

[79]  Timothy F. Cootes,et al.  A mixture model for representing shape variation , 1999, Image Vis. Comput..

[80]  Kenneth R. Sloan,et al.  Surfaces from contours , 1992, TOGS.

[81]  Alex Pentland,et al.  Modal Matching for Correspondence and Recognition , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[82]  Ch. Brechbuhler,et al.  Parameterisation of closed surfaces for 3-D shape description , 1995 .

[83]  Pengfei Zhu,et al.  On Critical Point Detection of Digital Shapes , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[84]  S. Lawrie,et al.  Brain abnormality in schizophrenia , 1998, British Journal of Psychiatry.

[85]  Hemant D. Tagare,et al.  Shape-based nonrigid correspondence with application to heart motion analysis , 1999, IEEE Transactions on Medical Imaging.

[86]  Larry S. Shapiro,et al.  A Modal Approach to Feature-based Correspondence , 1991, BMVC.

[87]  Stéphane Lavallée,et al.  Building a Complete Surface Model from Sparse Data Using Statistical Shape Models: Application to Computer Assisted Knee Surgery System , 1998, MICCAI.

[88]  Dominik S. Meier,et al.  Parameter space warping: shape-based correspondence between morphologically different objects , 2002, IEEE Transactions on Medical Imaging.

[89]  Christian Michael Brechbühler Description and analysis of 3-D shapes by parametrization of closed surfaces , 1995 .

[90]  Dorothea Heiss-Czedik,et al.  An Introduction to Genetic Algorithms. , 1997, Artificial Life.

[91]  Ron Kikinis,et al.  On the Laplace-Beltrami operator and brain surface flattening , 1999, IEEE Transactions on Medical Imaging.

[92]  William H. Press,et al.  Numerical recipes in C , 2002 .

[93]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[94]  Jianjun Cui,et al.  Equidistribution on the Sphere , 1997, SIAM J. Sci. Comput..

[95]  William E. Lorensen,et al.  Decimation of triangle meshes , 1992, SIGGRAPH.

[96]  Timothy F. Cootes,et al.  Active Appearance Models , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[97]  David A. Rottenberg,et al.  Quasi-Conformally Flat Mapping the Human Cerebellum , 1999, MICCAI.

[98]  Timothy F. Cootes,et al.  Comparing Active Shape Models with Active Appearance Models , 1999, BMVC.

[99]  B. Efron The jackknife, the bootstrap, and other resampling plans , 1987 .

[100]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[101]  Timothy F. Cootes,et al.  Training Models of Shape from Sets of Examples , 1992, BMVC.

[102]  Christopher J. Taylor,et al.  A Framework for Automatic Landmark Identification Using a New Method of Nonrigid Correspondence , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[103]  William E. Lorensen,et al.  The visualization toolkit (2nd ed.): an object-oriented approach to 3D graphics , 1998 .

[104]  Christopher J. Taylor,et al.  A Method of Automated Landmark Generation for Automated 3D PDM Construction , 2000, BMVC.

[105]  Lawrence H. Staib,et al.  Shape-based 3D surface correspondence using geodesics and local geometry , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[106]  Christopher R. Houck,et al.  A Genetic Algorithm for Function Optimization: A Matlab Implementation , 2001 .

[107]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .