Proximal alternating direction-based contraction methods for separable linearly constrained convex optimization
暂无分享,去创建一个
[1] Junfeng Yang,et al. Alternating Direction Algorithms for 1-Problems in Compressive Sensing , 2009, SIAM J. Sci. Comput..
[2] Stanley Osher,et al. A Unified Primal-Dual Algorithm Framework Based on Bregman Iteration , 2010, J. Sci. Comput..
[3] Su Zhang,et al. A modified alternating direction method for convex quadratically constrained quadratic semidefinite programs , 2010, Eur. J. Oper. Res..
[4] Wotao Yin,et al. Alternating direction augmented Lagrangian methods for semidefinite programming , 2010, Math. Program. Comput..
[5] Michael K. Ng,et al. Solving Constrained Total-variation Image Restoration and Reconstruction Problems via Alternating Direction Methods , 2010, SIAM J. Sci. Comput..
[6] Xavier Bresson,et al. Bregmanized Nonlocal Regularization for Deconvolution and Sparse Reconstruction , 2010, SIAM J. Imaging Sci..
[7] Ernie Esser,et al. Applications of Lagrangian-Based Alternating Direction Methods and Connections to Split Bregman , 2009 .
[8] Tom Goldstein,et al. The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..
[9] Bingsheng He,et al. Alternating directions based contraction method for generally separable linearly constrained convex programming problems , 2009 .
[10] Xiaoming Yuan,et al. Alternating Direction Methods for Sparse Covariance Selection * , 2009 .
[11] J.-C. Pesquet,et al. A Douglas–Rachford Splitting Approach to Nonsmooth Convex Variational Signal Recovery , 2007, IEEE Journal of Selected Topics in Signal Processing.
[12] Xiaoming Yuan,et al. A descent method for structured monotone variational inequalities , 2007, Optim. Methods Softw..
[13] L. Liao,et al. ALTERNATING PROJECTION BASED PREDICTION-CORRECTION METHODS FOR STRUCTURED VARIATIONAL INEQUALITIES , 2006 .
[14] Bingsheng He,et al. Comparison of Two Kinds of Prediction-Correction Methods for Monotone Variational Inequalities , 2004, Comput. Optim. Appl..
[15] I. Daubechies,et al. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.
[16] F. Facchinei,et al. Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .
[17] Bingsheng He,et al. A new inexact alternating directions method for monotone variational inequalities , 2002, Math. Program..
[18] Stephen J. Wright,et al. Numerical Optimization , 2018, Fundamental Statistical Inference.
[19] Bingsheng He,et al. Some convergence properties of a method of multipliers for linearly constrained monotone variational inequalities , 1998, Oper. Res. Lett..
[20] Robert R. Meyer,et al. A variable-penalty alternating directions method for convex optimization , 1998, Math. Program..
[21] Marc Teboulle,et al. Convergence of Proximal-Like Algorithms , 1997, SIAM J. Optim..
[22] B. He. A class of projection and contraction methods for monotone variational inequalities , 1997 .
[23] Marc Teboulle,et al. A proximal-based decomposition method for convex minimization problems , 1994, Math. Program..
[24] Jonathan Eckstein. Some Saddle-function splitting methods for convex programming , 1994 .
[25] Masao Fukushima,et al. Some Reformulations and Applications of the Alternating Direction Method of Multipliers , 1994 .
[26] W. Hager,et al. Large Scale Optimization : State of the Art , 1993 .
[27] Masao Fukushima,et al. Application of the alternating direction method of multipliers to separable convex programming problems , 1992, Comput. Optim. Appl..
[28] John N. Tsitsiklis,et al. Parallel and distributed computation , 1989 .
[29] R. Glowinski,et al. Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .
[30] R. Glowinski,et al. Numerical Methods for Nonlinear Variational Problems , 1985 .
[31] Dimitri P. Bertsekas,et al. Constrained Optimization and Lagrange Multiplier Methods , 1982 .
[32] W. W. Breckner. Blum, E. / Oettli, W., Mathematische Optimierung, Grundlagen und Verfahren, IX, 413 S., 5 Abb., Berlin‐Heidelberg‐New York. Springer‐Verlag. 1975. DM 148,‐. US $ 60.70 . , 1977 .
[33] R. Rockafellar. Monotone Operators and the Proximal Point Algorithm , 1976 .
[34] B. Mercier,et al. A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .
[35] G. Stephanopoulos,et al. The use of Hestenes' method of multipliers to resolve dual gaps in engineering system optimization , 1975 .
[36] H. Brezis. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .