Proximal alternating direction-based contraction methods for separable linearly constrained convex optimization

[1]  Junfeng Yang,et al.  Alternating Direction Algorithms for 1-Problems in Compressive Sensing , 2009, SIAM J. Sci. Comput..

[2]  Stanley Osher,et al.  A Unified Primal-Dual Algorithm Framework Based on Bregman Iteration , 2010, J. Sci. Comput..

[3]  Su Zhang,et al.  A modified alternating direction method for convex quadratically constrained quadratic semidefinite programs , 2010, Eur. J. Oper. Res..

[4]  Wotao Yin,et al.  Alternating direction augmented Lagrangian methods for semidefinite programming , 2010, Math. Program. Comput..

[5]  Michael K. Ng,et al.  Solving Constrained Total-variation Image Restoration and Reconstruction Problems via Alternating Direction Methods , 2010, SIAM J. Sci. Comput..

[6]  Xavier Bresson,et al.  Bregmanized Nonlocal Regularization for Deconvolution and Sparse Reconstruction , 2010, SIAM J. Imaging Sci..

[7]  Ernie Esser,et al.  Applications of Lagrangian-Based Alternating Direction Methods and Connections to Split Bregman , 2009 .

[8]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[9]  Bingsheng He,et al.  Alternating directions based contraction method for generally separable linearly constrained convex programming problems , 2009 .

[10]  Xiaoming Yuan,et al.  Alternating Direction Methods for Sparse Covariance Selection * , 2009 .

[11]  J.-C. Pesquet,et al.  A Douglas–Rachford Splitting Approach to Nonsmooth Convex Variational Signal Recovery , 2007, IEEE Journal of Selected Topics in Signal Processing.

[12]  Xiaoming Yuan,et al.  A descent method for structured monotone variational inequalities , 2007, Optim. Methods Softw..

[13]  L. Liao,et al.  ALTERNATING PROJECTION BASED PREDICTION-CORRECTION METHODS FOR STRUCTURED VARIATIONAL INEQUALITIES , 2006 .

[14]  Bingsheng He,et al.  Comparison of Two Kinds of Prediction-Correction Methods for Monotone Variational Inequalities , 2004, Comput. Optim. Appl..

[15]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[16]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[17]  Bingsheng He,et al.  A new inexact alternating directions method for monotone variational inequalities , 2002, Math. Program..

[18]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[19]  Bingsheng He,et al.  Some convergence properties of a method of multipliers for linearly constrained monotone variational inequalities , 1998, Oper. Res. Lett..

[20]  Robert R. Meyer,et al.  A variable-penalty alternating directions method for convex optimization , 1998, Math. Program..

[21]  Marc Teboulle,et al.  Convergence of Proximal-Like Algorithms , 1997, SIAM J. Optim..

[22]  B. He A class of projection and contraction methods for monotone variational inequalities , 1997 .

[23]  Marc Teboulle,et al.  A proximal-based decomposition method for convex minimization problems , 1994, Math. Program..

[24]  Jonathan Eckstein Some Saddle-function splitting methods for convex programming , 1994 .

[25]  Masao Fukushima,et al.  Some Reformulations and Applications of the Alternating Direction Method of Multipliers , 1994 .

[26]  W. Hager,et al.  Large Scale Optimization : State of the Art , 1993 .

[27]  Masao Fukushima,et al.  Application of the alternating direction method of multipliers to separable convex programming problems , 1992, Comput. Optim. Appl..

[28]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[29]  R. Glowinski,et al.  Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .

[30]  R. Glowinski,et al.  Numerical Methods for Nonlinear Variational Problems , 1985 .

[31]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[32]  W. W. Breckner Blum, E. / Oettli, W., Mathematische Optimierung, Grundlagen und Verfahren, IX, 413 S., 5 Abb., Berlin‐Heidelberg‐New York. Springer‐Verlag. 1975. DM 148,‐. US $ 60.70 . , 1977 .

[33]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[34]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[35]  G. Stephanopoulos,et al.  The use of Hestenes' method of multipliers to resolve dual gaps in engineering system optimization , 1975 .

[36]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .