New upper bounds on sphere packings I

We continue the study of the linear programming bounds for sphere packing introduced by Cohn and Elkies. We use theta series to give another proof of the principal theorem, and present some related results and conjectures. This article is in the arXiv as: arXiv:math.MG/0110010

[1]  G. Szegö,et al.  Über gewisse Potenzreihen mit lauter positiven Koeffizienten , 1933 .

[2]  C. Siegel Über Gitterpunkte in Convexen Körpern und ein Damit Zusammenhängendes Extremalproblem , 1935 .

[3]  N. Levinson On a Problem of Polya , 1936 .

[4]  G. A. Watson A treatise on the theory of Bessel functions , 1944 .

[5]  D. V. Widder,et al.  The Laplace Transform , 1943 .

[6]  D. Widder,et al.  Advanced Calculus: Second Edition , 1947 .

[7]  M. Stone The Generalized Weierstrass Approximation Theorem , 1948 .

[8]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[9]  T. MacRobert Higher Transcendental Functions , 1955, Nature.

[10]  P. F. Brandwein Book Reviews: Higher Transcendental Functions. vol III. Based in part on notes left by Harry Bateman , 1955 .

[11]  N. D. Bruijn Asymptotic methods in analysis , 1958 .

[12]  C. A. Rogers The Packing of Equal Spheres , 1958 .

[13]  Helmut Groemer,et al.  Existenzsätze für Lagerungen im Euklidishen Raum , 1963 .

[14]  Leon M. Hall,et al.  Special Functions , 1998 .

[15]  W. Rudin Principles of mathematical analysis , 1964 .

[16]  M. Newman,et al.  Interpolation and approximation , 1965 .

[17]  R. A. Silverman,et al.  Special functions and their applications , 1966 .

[18]  L. Schwartz Théorie des distributions , 1966 .

[19]  Eileen L. Poiani Mean Cesaro summability of Laguerre and Hermite series and asymptotic estimates of Laguerre and Hermite polynomials , 1972 .

[20]  E. Stein,et al.  Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .

[21]  P. Delsarte Bounds for unrestricted codes, by linear programming , 1972 .

[22]  Robert J. McEliece,et al.  New upper bounds on the rate of a code via the Delsarte-MacWilliams inequalities , 1977, IEEE Trans. Inf. Theory.

[23]  N. J. A. Sloane,et al.  New Bounds on the Number of Unit Spheres That Can Touch a Unit Sphere in n Dimensions , 1979, J. Comb. Theory, Ser. A.

[24]  B. Logan Extremal Problems for Positive-Definite Bandlimited Functions. II. Eventually Negative Functions , 1983 .

[25]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[26]  K. Stempak Almost everywhere summability of Laguerre series , 1991 .

[27]  S. Thangavelu Lectures on Hermite and Laguerre expansions , 1993 .

[28]  Norman Morrison,et al.  Introduction to Fourier Analysis , 1994, An Invitation to Modern Number Theory.

[29]  Thomas C. Hales Sphere packings, I , 1997, Discret. Comput. Geom..

[30]  T. Hales The Kepler conjecture , 1998, math/9811078.

[31]  Riadh Ben Ghanem,et al.  Explicit Quadrature Formulae for Entire Functions of Exponential Type , 1998 .

[32]  G. Kuperberg Notions of denseness , 1999, math/9908003.

[33]  Henry Cohn New upper bounds on sphere packings II , 2001, math/0110010.

[34]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.