Chaos in a modified van der Pol system and in its fractional order systems

Chaos in a modified van der Pol system and in its fractional order systems is studied in this paper. It is found that chaos exists both in the system and in the fractional order systems with order from 1.8 down to 0.8 much less than the number of states of the system, two. By phase portraits, Poincare maps and bifurcation diagrams, the chaotic behaviors of fractional order modified van der Pol systems are presented.

[1]  N. Ford,et al.  Analysis of Fractional Differential Equations , 2002 .

[2]  B. Onaral,et al.  Fractal system as represented by singularity function , 1992 .

[3]  Johan Grasman,et al.  Relaxation Oscillations , 2009, Encyclopedia of Complexity and Systems Science.

[4]  I. Podlubny Fractional differential equations , 1998 .

[5]  A. P. Ivanov,et al.  Bifurcations in impact systems , 1996 .

[6]  Ya-Pu Zhao,et al.  Nonlinear behavior for nanoscale electrostatic actuators with Casimir force , 2005 .

[7]  T. Hartley,et al.  Dynamics and Control of Initialized Fractional-Order Systems , 2002 .

[8]  B. V. D. Pol,et al.  Frequency Demultiplication , 1927, Nature.

[9]  Bifurcation and chaos in a discrete genetic toggle switch system , 2005 .

[10]  Reyad El-Khazali,et al.  Stabilization of generalized fractional order chaotic systems using state feedback control , 2004 .

[11]  Elena Grigorenko,et al.  Chaotic dynamics of the fractional Lorenz system. , 2003, Physical review letters.

[12]  Ahmad Harb,et al.  On nonlinear control design for autonomous chaotic systems of integer and fractional orders , 2003 .

[13]  Yen-Sheng Chen,et al.  Adaptive synchronization of unidirectional and mutual coupled chaotic systems , 2005 .

[14]  Sporadic randomness, Maxwell's Demon and the Poincaré recurrence times , 2000, cond-mat/0006245.

[15]  Julien Clinton Sprott,et al.  Chaos in fractional-order autonomous nonlinear systems , 2003 .

[16]  H. Kober ON FRACTIONAL INTEGRALS AND DERIVATIVES , 1940 .

[17]  Reconnection in a global model of Poincaré map describing dynamics of magnetic field lines in a reversed shear tokamak , 2003 .

[18]  Balth van der Pol Jun Docts. Sc.,et al.  LXXII. The heartbeat considered as a relaxation oscillation, and an electrical model of the heart , 1928 .

[19]  Ahmed S. Elwakil,et al.  Fractional-order Wien-bridge oscillator , 2001 .

[20]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[21]  Chyi Hwang,et al.  A note on time-domain simulation of feedback fractional-order systems , 2002, IEEE Trans. Autom. Control..

[22]  Zhujun Jing,et al.  Bifurcation and chaos in discrete FitzHugh–Nagumo system ☆ , 2004 .

[23]  Alain Oustaloup,et al.  From fractal robustness to the CRONE control , 1999 .

[24]  K. Moore,et al.  Discretization schemes for fractional-order differentiators and integrators , 2002 .

[25]  Juebang Yu,et al.  Synchronization of fractional-order chaotic systems , 2005, Proceedings. 2005 International Conference on Communications, Circuits and Systems, 2005..

[26]  Junjie Wei,et al.  Stability and bifurcation of mutual system with time delay , 2004 .

[27]  P. Arena,et al.  Chaotic behavior in noninteger-order cellular neural networks , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[28]  Gao Jin-feng Chaos in Fractional-Order Chua's System and Its Synchronization , 2007 .

[29]  Balth. van der Pol Jun. LXXXVIII. On “relaxation-oscillations” , 1926 .

[30]  Wei Xu,et al.  Smooth and non-smooth travelling waves in a nonlinearly dispersive Boussinesq equation , 2005 .

[31]  Chunguang Li,et al.  Chaos in the fractional order Chen system and its control , 2004 .

[32]  Alain Oustaloup,et al.  Frequency-band complex noninteger differentiator: characterization and synthesis , 2000 .

[33]  Elena Grigorenko,et al.  Erratum: Chaotic Dynamics of the Fractional Lorenz System [Phys. Rev. Lett.91, 034101 (2003)] , 2006 .

[34]  Zheng-Ming Ge,et al.  Control, anticontrol and synchronization of chaos for an autonomous rotational machine system with time-delay , 2005 .

[35]  Anatole Kenfack Bifurcation structure of two coupled periodically driven double-well Duffing oscillators , 2003 .

[36]  Zheng-Ming Ge,et al.  Bifurcations and chaos of a two-degree-of-freedom dissipative gyroscope , 2005 .

[37]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[38]  P. Arena,et al.  Bifurcation and Chaos in Noninteger Order Cellular Neural Networks , 1998 .

[39]  Yen-Sheng Chen,et al.  Synchronization of unidirectional coupled chaotic systems via partial stability , 2004 .

[40]  Luigi Rodino,et al.  Existence and Uniqueness for a Nonlinear Fractional Differential Equation , 1996 .

[41]  H. Fang,et al.  Symbolic dynamics of the Lorenz equations , 1996 .

[42]  Continuous pricing in oligopoly , 1996 .

[43]  I. Podlubny,et al.  Analogue Realizations of Fractional-Order Controllers , 2002 .

[44]  Z. Ge,et al.  Phase synchronization of coupled chaotic multiple time scales systems , 2004 .

[45]  Hong-yong Yang,et al.  Hopf bifurcation in REM algorithm with communication delay , 2005 .

[46]  A. Voros,et al.  Normal modes of billiards portrayed in the stellar (or nodal) representation , 1995 .

[47]  Zhengdi Zhang,et al.  Bifurcations of traveling wave solutions in a compound KdV-type equation , 2005 .

[48]  Patterns of bifurcation in iterated function systems , 1996 .

[49]  Cristina Masoller,et al.  Characterization of strange attractors of lorenz model of general circulation of the atmosphere , 1995 .

[50]  Chunguang Li,et al.  Chaos and hyperchaos in the fractional-order Rössler equations , 2004 .