Production of microalgal-based carbon encapsulated iron nanoparticles (ME-nFe) to remove heavy metals in wastewater

[1]  M. Khanal,et al.  Determination of Point Zero Charge (PZC) of Homemade Charcoals Of Shorea Robusta (Sakhuwa) and Pinus Roxburghii (Salla) , 2020 .

[2]  William R. Dichtel,et al.  Evaluating the effects of water matrix constituents on micropollutant removal by activated carbon and β-cyclodextrin polymer adsorbents. , 2020, Water research.

[3]  I. Nambi,et al.  Single-step removal of Hexavalent chromium and phenol using meso zerovalent iron. , 2020, Chemosphere.

[4]  E. Ficara,et al.  Outdoor pilot-scale raceway as a microalgae-bacteria sidestream treatment in a WWTP. , 2019, The Science of the total environment.

[5]  Yunhong Zhang,et al.  Enhanced sulfamethoxazole degradation by peroxymonosulfate activation with sulfide-modified microscale zero-valent iron (S-mFe0): Performance, mechanisms, and the role of sulfur species , 2019, Chemical Engineering Journal.

[6]  Haiping Yang,et al.  Hydrothermal carbonization of natural microalgae containing a high ash content , 2019, Fuel.

[7]  A. Fullana,et al.  Green Synthesis of Thin Shell Carbon-Encapsulated Iron Nanoparticles via Hydrothermal Carbonization , 2018 .

[8]  A. J. Hargreaves,et al.  Fate and removal of metals in municipal wastewater treatment: a review , 2018 .

[9]  A. W. Bhutto,et al.  An overview of effect of process parameters on hydrothermal carbonization of biomass , 2017 .

[10]  E. Collina,et al.  Nitrogen activation of carbon-encapsulated zero-valent iron nanoparticles and influence of the activation temperature on heavy metals removal , 2017 .

[11]  William R. Dichtel,et al.  Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer , 2015, Nature.

[12]  Per Møller,et al.  Carotenoids, Phenolic Compounds and Tocopherols Contribute to the Antioxidative Properties of Some Microalgae Species Grown on Industrial Wastewater , 2015, Marine drugs.

[13]  A. Fullana,et al.  Heavy metal release due to aging effect during zero valent iron nanoparticles remediation. , 2015, Water research.

[14]  Yang Deng,et al.  Advanced Oxidation Processes (AOPs) in Wastewater Treatment , 2015, Current Pollution Reports.

[15]  V. Mezzanotte,et al.  Removal of metallic elements from real wastewater using zebra mussel bio-filtration process , 2015 .

[16]  N. Thomaidis,et al.  Reductive Degradation of Perfluorinated Compounds in Water using Mg-aminoclay coated Nanoscale Zero Valent Iron , 2015 .

[17]  R. Vidu,et al.  Synthesis of Magnetic Nanoparticles for the removal of heavy metal ions from wastewaters , 2014 .

[18]  T. Scott,et al.  The removal of uranium onto carbon-supported nanoscale zero-valent iron particles , 2014, Journal of Nanoparticle Research.

[19]  Shuixia Chen,et al.  Carbothermal preparation of porous carbon-encapsulated iron composite for the removal of trace hexavalent chromium , 2014 .

[20]  T. Karpenyuk,et al.  The effect of light intensity to the lipids productivity and fatty acid composition of green microalgae , 2014 .

[21]  Ai Phing Lim,et al.  A review on economically adsorbents on heavy metals removal in water and wastewater , 2014, Reviews in Environmental Science and Bio/Technology.

[22]  Liang Peng,et al.  Iron improving bio-char derived from microalgae on removal of tetracycline from aqueous system , 2014, Environmental Science and Pollution Research.

[23]  Duangjai Ochaikul,et al.  Evaluation of antioxidant capacities of green microalgae , 2014, Journal of Applied Phycology.

[24]  Duangjai Ochaikul,et al.  Evaluation of antioxidant capacities of green microalgae , 2013, Journal of Applied Phycology.

[25]  Joseph R. V. Flora,et al.  Influence of reaction time and temperature on product formation and characteristics associated with the hydrothermal carbonization of cellulose. , 2013, Bioresource technology.

[26]  J. M. Franco,et al.  Comparison of microalgal biomass profiles as novel functional ingredient for food products , 2013 .

[27]  M. Tadé,et al.  Nano-Fe⁰ encapsulated in microcarbon spheres: synthesis, characterization, and environmental applications. , 2012, ACS applied materials & interfaces.

[28]  H. V. Rasika Dias,et al.  Iron-containing nanomaterials: synthesis, properties, and environmental applications , 2012 .

[29]  F. Sparvoli,et al.  Anti-nutrient components and metabolites with health implications in seeds of 10 common bean (Phaseolus vulgaris L. and Phaseolus lunatus L.) landraces cultivated in southern Italy , 2012 .

[30]  Fenglian Fu,et al.  Removal of heavy metal ions from wastewaters: a review. , 2011, Journal of environmental management.

[31]  G. Piringer,et al.  Nanoscale Zerovalent Iron Supported on Uniform Carbon Microspheres for the In situ Remediation of Chlorinated Hydrocarbons , 2010 .

[32]  H. Ted Davis,et al.  Hydrothermal carbonization of microalgae , 2010 .

[33]  Markus Antonietti,et al.  Engineering Carbon Materials from the Hydrothermal Carbonization Process of Biomass , 2010, Advances in Materials.

[34]  A. B. Fuertes,et al.  Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. , 2009, Chemistry.

[35]  T. Mallouk,et al.  Carbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent chromium. , 2008, Environmental science & technology.

[36]  Santiago Esplugas,et al.  Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents. , 2007, Journal of hazardous materials.

[37]  A. Saeed,et al.  Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbent , 2005 .

[38]  S. Otles,et al.  Fatty acid composition of Chlorella and Spirulina microalgae species. , 2001, Journal of AOAC International.

[39]  P. Anantharaman,et al.  Antioxidant properties and total phenolic content o f a marine diatom, Navicula clavata and green microalgae, Chlorella marina and Dunaliella salina , 2013 .