Ultrasound Imaging Velocimetry: a review

Whole-field velocity measurement techniques based on ultrasound imaging (a.k.a. ‘ultrasound imaging velocimetry’ or ‘echo-PIV’) have received significant attention from the fluid mechanics community in the last decade, in particular because of their ability to obtain velocity fields in flows that elude characterisation by conventional optical methods. In this review, an overview is given of the history, typical components and challenges of these techniques. The basic principles of ultrasound image formation are summarised, as well as various techniques to estimate flow velocities; the emphasis is on correlation-based techniques. Examples are given for a wide range of applications, including in vivo cardiovascular flow measurements, the characterisation of sediment transport and the characterisation of complex non-Newtonian fluids. To conclude, future opportunities are identified. These encompass not just optimisation of the accuracy and dynamic range, but also extension to other application areas.

[1]  D. Holland,et al.  Measurement of an oil–water flow using magnetic resonance imaging , 2017 .

[2]  M E Anderson,et al.  Speckle tracking for multi-dimensional flow estimation. , 2000, Ultrasonics.

[3]  D. Downey,et al.  Three-dimensional ultrasound imaging , 1995, Medical Imaging.

[4]  Anna I Hickerson,et al.  On the resonance of a pliant tube as a mechanism for valveless pumping , 2006, Journal of Fluid Mechanics.

[5]  K. Beach,et al.  Cross-beam vector Doppler ultrasound for angle-independent velocity measurements. , 2000, Ultrasound in medicine & biology.

[6]  Johan Wiklund,et al.  Methodology for in-line rheology by ultrasound Doppler velocity profiling and pressure difference techniques , 2007 .

[7]  Xianjian Zou,et al.  Estimation of sediment incipient velocity using B-mode ultrasound imaging technique , 2015, Wuhan University Journal of Natural Sciences.

[8]  F. S. Foster,et al.  Beyond 30 MHz [applications of high-frequency ultrasound imaging] , 1996 .

[10]  Brecht Heyde,et al.  3D Intra-cardiac flow estimation using speckle tracking: A feasibility study in synthetic ultrasound data , 2013, 2013 IEEE International Ultrasonics Symposium (IUS).

[11]  Jean Hertzberg,et al.  Noninvasive Measurement of Steady and Pulsating Velocity Profiles and Shear Rates in Arteries Using Echo PIV: In Vitro Validation Studies , 2004, Annals of Biomedical Engineering.

[12]  Martin D. Fox,et al.  Ultrasound image enhancement: A review , 2012, Biomed. Signal Process. Control..

[13]  A. Sarvazyan,et al.  Biomedical applications of radiation force of ultrasound: historical roots and physical basis. , 2010, Ultrasound in medicine & biology.

[14]  Michael Bachmann Nielsen,et al.  Examples of in vivo blood vector velocity estimation. , 2007, Ultrasound in medicine & biology.

[15]  Theodore J. Heindel,et al.  A Review of X-Ray Flow Visualization With Applications to Multiphase Flows , 2011 .

[16]  W.D. O'Brien,et al.  Current time-domain methods for assessing tissue motion by analysis from reflected ultrasound echoes-a review , 1993, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[17]  Marek Belohlavek,et al.  Flow Velocity Vector Fields by Ultrasound Particle Imaging Velocimetry , 2011, Journal of ultrasound in medicine : official journal of the American Institute of Ultrasound in Medicine.

[18]  B. Friemel,et al.  Speckle decorrelation due to two-dimensional flow gradients , 1998, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[19]  S. I. Nikolov,et al.  SARUS: A synthetic aperture real-time ultrasound system , 2013, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[20]  B. Sigel,et al.  A brief history of Doppler ultrasound in the diagnosis of peripheral vascular disease. , 1998, Ultrasound in medicine & biology.

[21]  F. A. Firestone The Supersonic Reflectoscope; an Instrument for Inspecting the Interior of Metal Parts by Means of Sound Waves , 1944 .

[22]  P. Serruys,et al.  Intravascular real-time, two-dimensional echocardiography , 2005, The International Journal of Cardiac Imaging.

[23]  J. Jensen,et al.  Recent advances in blood flow vector velocity imaging , 2011, 2011 IEEE International Ultrasonics Symposium.

[24]  E. Windhab,et al.  Rheological study of concentrated suspensions in pressure-driven shear flow using a novel in-line ultrasound Doppler method , 2002 .

[25]  Emmanuel Cid,et al.  Wave patterns generated by an axisymmetric obstacle in a two-layer flow , 2013 .

[26]  M. Qian,et al.  The Validation of Echo-PIV Technique Used in a Stenosis Model , 2011, 2011 5th International Conference on Bioinformatics and Biomedical Engineering.

[27]  D. Rival,et al.  In vitro post-stenotic flow quantification and validation using echo particle image velocimetry (Echo PIV) , 2014 .

[28]  Morteza Gharib,et al.  Correlation Between Negative Near-Wall Shear Stress in Human Aorta and Various Stages of Congestive Heart Failure , 2003, Annals of Biomedical Engineering.

[29]  Christian J. Kähler,et al.  Ultra-high-speed 3D astigmatic particle tracking velocimetry: application to particle-laden supersonic impinging jets , 2014 .

[30]  M. Tanter,et al.  Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging , 2015, Nature.

[31]  O Saunders,et al.  Ultrasound transducer self heating: development of 3-D finite-element models , 2004 .

[32]  Ottavio Alfieri,et al.  The vortex—an early predictor of cardiovascular outcome? , 2014, Nature Reviews Cardiology.

[33]  Johan Wiklund,et al.  Monitoring liquid displacement of model and industrial fluids in pipes by in-line ultrasonic rheometry , 2010 .

[34]  Xianjian Zou,et al.  B-scan ultrasound imaging measurement of suspended sediment concentration and its vertical distribution , 2014 .

[35]  Hairong Zheng,et al.  Development of a custom-designed echo particle image velocimetry system for multi-component hemodynamic measurements: system characterization and initial experimental results , 2008, Physics in medicine and biology.

[36]  Damien Garcia,et al.  Ultrasound Vector Flow Imaging: II: Parallel Systems. , 2016, IEEE transactions on ultrasonics, ferroelectrics, and frequency control.

[37]  S. Manneville,et al.  Multiple yielding processes in a colloidal gel under large amplitude oscillatory stress. , 2015, Soft matter.

[38]  Paul Suetens,et al.  Fundamentals of Medical Imaging by Paul Suetens , 2009 .

[39]  Jean Hertzberg,et al.  Numerical modeling of microbubble backscatter to optimize ultrasound particle image velocimetry imaging: initial studies. , 2004, Ultrasonics.

[40]  Gianni Pedrizzetti,et al.  In vivo analysis of intraventricular fluid dynamics in healthy hearts , 2012 .

[41]  Max Born,et al.  Principles of optics - electromagnetic theory of propagation, interference and diffraction of light (7. ed.) , 1999 .

[42]  A. Gurung,et al.  Measurement of turbulence statistics in single-phase and two-phase flows using ultrasound imaging velocimetry , 2016 .

[43]  Thomas S. Huang,et al.  Digital Holography , 2003 .

[44]  K J Parker,et al.  Multilevel and motion model-based ultrasonic speckle tracking algorithms. , 1998, Ultrasound in medicine & biology.

[45]  J M Rubin,et al.  Power Doppler US: a potentially useful alternative to mean frequency-based color Doppler US. , 1994, Radiology.

[46]  Georg Schmitz,et al.  Detection and Tracking of Multiple Microbubbles in Ultrasound B-Mode Images , 2016, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[47]  A. Dallai,et al.  ULA-OP: an advanced open platform for ultrasound research , 2009, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[48]  Kevin J. Parker,et al.  Feature-adaptive motion tracking of ultrasound image sequences using a deformable mesh , 1998, IEEE Transactions on Medical Imaging.

[49]  John Foss,et al.  Springer Handbook of Experimental Fluid Mechanics , 2007 .

[50]  Dong-Guk Paeng,et al.  Improvement of ultrasound speckle image velocimetry using image enhancement techniques. , 2014, Ultrasonics.

[51]  Paul Suetens Fundamentals of Medical Imaging , 2002 .

[52]  Johan Wiklund,et al.  A comparative study of UVP and LDA techniques for pulp suspensions in pipe flow , 2006 .

[53]  M. Crapper,et al.  Flow field visualization of sediment-laden flow using ultrasonic imaging , 2000 .

[54]  Robin Shandas,et al.  Direct echo PIV flow vector mapping on ultrasound DICOM images , 2010, 2010 IEEE International Ultrasonics Symposium.

[55]  Christian Poelma,et al.  Enhancing the dynamic range of Ultrasound Imaging Velocimetry using interleaved imaging , 2013 .

[56]  Gaël Epely-Chauvin,et al.  Refractive-index and density matching in concentrated particle suspensions: a review , 2011 .

[57]  Meng-Xing Tang,et al.  3D Flow reconstruction using ultrasound PIV , 2011 .

[58]  M. Fink,et al.  Functional ultrasound imaging of the brain , 2011, Nature Methods.

[59]  Helmut Ermert,et al.  Schlieren visualization of ultrasonic wave fields with high spatial resolution. , 2006, Ultrasonics.

[60]  Hairong Zheng,et al.  Measurement of flow velocity fields in small vessel-mimic phantoms and vessels of small animals using micro ultrasonic particle image velocimetry (micro-EPIV) , 2010, Physics in medicine and biology.

[61]  J. G. Abbott,et al.  Rationale and derivation of MI and TI--a review. , 1999, Ultrasound in medicine & biology.

[62]  Christopher J. Elkins,et al.  Magnetic resonance velocimetry: applications of magnetic resonance imaging in the measurement of fluid motion , 2007 .

[63]  J. Fujimoto,et al.  Optical Coherence Tomography , 1991 .

[64]  S.W. Smith,et al.  High-speed ultrasound volumetric imaging system. I. Transducer design and beam steering , 1991, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[65]  S. Manneville,et al.  Avalanche-like fluidization of a non-Brownian particle gel. , 2015, Soft matter.

[66]  Steven L. Ceccio,et al.  Validation of Electrical-Impedance Tomography for Measurements of Material Distribution in Two-Phase Flows , 2000 .

[67]  Jean Hertzberg,et al.  Development and validation of echo PIV , 2004 .

[68]  Nicolas Taberlet,et al.  Ultrafast ultrasonic imaging coupled to rheometry: principle and illustration. , 2013, The Review of scientific instruments.

[69]  T. Delaunay,et al.  An experimental study of particle sedimentation using ultrasonic speckle velocimetry , 2010 .

[70]  A Goldstein,et al.  Slice thickness measurements. , 1988, Journal of ultrasound in medicine : official journal of the American Institute of Ultrasound in Medicine.

[71]  R. F. Mudde,et al.  Liquid velocity field in a bubble column: LDA experiments , 1997 .

[72]  Jeffrey W. Gartner,et al.  Estimating suspended solids concentrations from backscatter intensity measured by acoustic Doppler current profiler in San Francisco Bay, California , 2004 .

[73]  Wentao Yu,et al.  Real-time texture analysis for identifying optimum microbubble concentration in 2-D ultrasonic particle image velocimetry. , 2011, Ultrasound in medicine & biology.

[74]  Tomasz Dyakowski,et al.  Applications of electrical tomography for gas-solids and liquid-solids flows : a review , 2000 .

[75]  Damien Garcia,et al.  Ultrasound Vector Flow Imaging—Part I: Sequential Systems , 2016, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[76]  F. Duck Nonlinear acoustics in diagnostic ultrasound. , 2002, Ultrasound in medicine & biology.

[77]  Yasushi Takeda,et al.  Velocity profile measurement by ultrasound Doppler shift method , 1986 .

[78]  Hairong Zheng,et al.  Real time multicomponent echo particle image velocimetry technique for opaque flow imaging , 2006 .

[79]  P. Sengupta,et al.  Left ventricular isovolumic flow sequence during sinus and paced rhythms: new insights from use of high-resolution Doppler and ultrasonic digital particle imaging velocimetry. , 2007, Journal of the American College of Cardiology.

[80]  Lihui Peng,et al.  Image reconstruction algorithms for electrical capacitance tomography , 2003 .

[81]  Paul A Dayton,et al.  The magnitude of radiation force on ultrasound contrast agents. , 2002, The Journal of the Acoustical Society of America.

[82]  Partho P Sengupta,et al.  Multiplanar visualization of blood flow using echocardiographic particle imaging velocimetry. , 2012, JACC. Cardiovascular imaging.

[83]  Kweon-Ho Nam,et al.  Effects of red blood cell aggregates dissociation on the estimation of ultrasound speckle image velocimetry. , 2014, Ultrasonics.

[84]  G E Trahey,et al.  Angle independent ultrasonic blood flow detection by frame-to-frame correlation of B-mode images. , 1988, Ultrasonics.

[85]  Ingvild Kinn Ekroll,et al.  Robust angle-independent blood velocity estimation based on dual-angle plane wave imaging , 2015, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[86]  T. Birdsall,et al.  A demonstration of ocean acoustic tomography , 1982, Nature.

[87]  F L Thurstone,et al.  Cardiac Imaging Using a Phased Array Ultrasound System: I. System Design , 1976, Circulation.

[88]  Thomas L. Szabo,et al.  Diagnostic Ultrasound Imaging: Inside Out , 2004 .

[89]  P. Carson,et al.  Speckle decorrelation flow measurement with B-mode US of contrast agent flow in a phantom and in rabbit kidney. , 1999, Radiology.

[90]  Arash Kheradvar,et al.  Echocardiographic particle image velocimetry: a novel technique for quantification of left ventricular blood vorticity pattern. , 2010, Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography.

[91]  Nico de Jong,et al.  Ultrasonic characterization of ultrasound contrast agents , 2009, Medical & Biological Engineering & Computing.

[92]  L. Bécu,et al.  High-frequency ultrasonic speckle velocimetry in sheared complex fluids , 2003, cond-mat/0311072.

[93]  Johan Wiklund,et al.  Application of in-line ultrasound Doppler-based UVP–PD rheometry method to concentrated model and industrial suspensions , 2008 .

[94]  Edouard Berrocal,et al.  Ballistic imaging of liquid breakup processes in dense sprays , 2009 .

[95]  Robin Shandas,et al.  In vitro and preliminary in vivo validation of echo particle image velocimetry in carotid vascular imaging. , 2011, Ultrasound in medicine & biology.

[96]  N Bom,et al.  Multiscan Echocardiography: I. Technical Description , 1973, Circulation.

[97]  P. Claus,et al.  How to optimize intracardiac blood flow tracking by echocardiographic particle image velocimetry? Exploring the influence of data acquisition using computer-generated data sets. , 2012, European heart journal cardiovascular Imaging.

[98]  Andreas Fouras,et al.  Three-dimensional synchrotron x-ray particle image velocimetry , 2007 .

[99]  G. Trahey,et al.  Angle Independent Ultrasonic Detection of Blood Flow , 1987, IEEE Transactions on Biomedical Engineering.

[100]  Hojin Ha,et al.  Velocity field measurements of valvular blood flow in a human superficial vein using high-frequency ultrasound speckle image velocimetry , 2010, The International Journal of Cardiovascular Imaging.

[101]  M C M Rutten,et al.  Complex flow patterns in a real‐size intracranial aneurysm phantom: phase contrast MRI compared with particle image velocimetry and computational fluid dynamics , 2012, NMR in biomedicine.

[102]  Huan Song,et al.  B-mode ultrasound imaging measurement and 3D reconstruction of submerged topography in sediment-laden flow , 2015 .

[103]  A. Kheradvar,et al.  Abstract 14952: Volumetric Echocardiographic Particle Image Velocimetry (V-Echo-PIV) , 2014 .

[104]  Mathias Fink,et al.  Vortex dynamics investigation using an acoustic technique , 1999 .

[105]  Michel Bertrand,et al.  Ultrasonic texture motion analysis: theory and simulation , 1995, IEEE Trans. Medical Imaging.

[106]  A. C. Baker,et al.  Ultrasound in Medicine , 1986 .

[107]  Brian Dushaw,et al.  Acoustic Tomography, Ocean , 2014, Encyclopedia of Remote Sensing.

[108]  Charlie Demené,et al.  4D microvascular imaging based on ultrafast Doppler tomography , 2016, NeuroImage.

[109]  Christoph Schnörr,et al.  Adaptive Dictionary-Based Spatio-temporal Flow Estimation for Echo PIV , 2015, EMMCVPR.

[110]  Jerry Westerweel,et al.  Ultrasound imaging velocimetry: Toward reliable wall shear stress measurements , 2012 .

[111]  J. Jensen,et al.  A new method for estimation of velocity vectors , 1998, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[112]  N de Jong,et al.  Ultrasound contrast imaging: current and new potential methods. , 2000, Ultrasound in medicine & biology.

[113]  Investigating a stretched vortex with ultrafast two-dimensional ultrasonic speckle velocimetry , 2001 .

[114]  Peter A Lewin,et al.  Ultrasound Transducer Selection in Clinical Imaging Practice , 2013, Journal of ultrasound in medicine : official journal of the American Institute of Ultrasound in Medicine.

[115]  Chee Hau Leow,et al.  Flow Velocity Mapping Using Contrast Enhanced High-Frame-Rate Plane Wave Ultrasound and Image Tracking: Methods and Initial in Vitro and in Vivo Evaluation. , 2015, Ultrasound in medicine & biology.

[116]  Marc D Weinshenker,et al.  Explososcan: a parallel processing technique for high speed ultrasound imaging with linear phased arrays. , 1984 .

[117]  Jerry Westerweel,et al.  Turbulence statistics from optical whole-field measurements in particle-laden turbulence , 2006 .

[118]  Bwamm Bart Beulen,et al.  Perpendicular ultrasound velocity measurement by 2D cross correlation of RF data. Part A: validation in a straight tube , 2010 .

[119]  M. Fink,et al.  Ultrafast two-dimensional ultrasonic speckle velocimetry: A tool in flow imaging , 2001 .

[120]  L. Lourenço Particle Image Velocimetry , 1989 .

[121]  J. Westerweel,et al.  Hele-Shaw rheometry , 2013 .

[122]  Karl Theo Dussik Über die Möglichkeit, hochfrequente mechanische Schwingungen als diagnostisches Hilfsmittel zu verwerten , 1942 .

[123]  Liang-Min Wang,et al.  Adaptive pattern correlation for two-dimensional blood flow measurements , 1996, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[124]  V. Gibiat,et al.  Plane wave echo particle image velocimetry , 2013 .

[125]  F. E. Barber,et al.  Ultrasonic duplex echo-Doppler scanner. , 1974, IEEE transactions on bio-medical engineering.

[126]  Hairong Zheng,et al.  Ultrasonic particle image velocimetry for improved flow gradient imaging: algorithms, methodology and validation , 2010, Physics in medicine and biology.

[127]  AntonioClaudio L. Nobrega,et al.  In vivo blood velocity measurements with particle image velocimetry in echocardiography using spontaneous contrast , 2015 .

[128]  Jørgen Arendt Jensen,et al.  Ultrasonic colour Doppler imaging , 2011, Interface Focus.

[129]  Jeff Powers,et al.  Medical ultrasound systems , 2011, Interface Focus.

[130]  Meng-Xing Tang,et al.  Ultrasound imaging velocimetry: effect of beam sweeping on velocity estimation. , 2013, Ultrasound in medicine & biology.

[131]  J.A. Jensen,et al.  Ultrasound research scanner for real-time synthetic aperture data acquisition , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[132]  Mickael Tanter,et al.  Ultrafast imaging in biomedical ultrasound , 2014 .

[133]  S. Manneville,et al.  Heterogeneous flow kinematics of cellulose nanofibril suspensions under shear. , 2015, Soft matter.

[134]  Gianni Pedrizzetti,et al.  Characterization and quantification of vortex flow in the human left ventricle by contrast echocardiography using vector particle image velocimetry. , 2008, JACC. Cardiovascular imaging.

[135]  J. Reid,et al.  Application of echo-ranging techniques to the determination of structure of biological tissues. , 1952, Science.

[136]  Jerry Westerweel,et al.  Two-Phase PIV in Bubbly Flows: Status and Trends , 2002 .

[137]  J. Waterton,et al.  Three-dimensional freehand ultrasound: image reconstruction and volume analysis. , 1997, Ultrasound in medicine & biology.

[138]  J. Westerweel,et al.  Ultrasound image velocimetry for rheological measurements , 2016 .

[139]  L. Lynnworth,et al.  Ultrasonic flowmeters: half-century progress report, 1955-2005. , 2006, Ultrasonics.