Semiparametric Techniques for Response Surface Methodology
暂无分享,去创建一个
[1] G. Vining,et al. Response Surfaces for the Mean and Variance Using a Nonparametric Approach , 1998 .
[2] H. Cramér. Mathematical methods of statistics , 1947 .
[3] R. Tibshirani,et al. Generalized additive models for medical research , 1986, Statistical methods in medical research.
[4] W. Härdle. Nonparametric and Semiparametric Models , 2004 .
[5] John,et al. Nonparametric Simple Regression: Smoothing Scatterplots , 2000 .
[6] D. W. Scott,et al. Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .
[7] Derek J. Pike,et al. Empirical Model‐building and Response Surfaces. , 1988 .
[8] Thomas Bäck,et al. Evolutionary algorithms in theory and practice - evolution strategies, evolutionary programming, genetic algorithms , 1996 .
[9] John A. Nelder,et al. A Simplex Method for Function Minimization , 1965, Comput. J..
[10] B. Ripley,et al. Semiparametric Regression: Preface , 2003 .
[11] J. Nash. Compact Numerical Methods for Computers , 2018 .
[12] R. H. Myers,et al. Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .
[13] David E. Goldberg,et al. Genetic Algorithms in Search Optimization and Machine Learning , 1988 .
[14] William A. Brenneman,et al. A Dual-Response Approach to Robust Parameter Design for a Generalized Linear Model , 2005 .
[15] M. Priestley,et al. Non‐Parametric Function Fitting , 1972 .
[16] Connie M. Borror,et al. Genetic Algorithms for the Construction of D-Optimal Designs , 2003 .
[17] K. Takezawa,et al. Introduction to Nonparametric Regression , 2005 .
[18] George E. P. Box,et al. Dispersion Effects From Fractional Designs , 1986 .
[19] R. Carroll,et al. Nonparametric Function Estimation for Clustered Data When the Predictor is Measured without/with Error , 2000 .
[20] R. Tibshirani,et al. Generalized Additive Models , 1991 .
[21] K. Dejong,et al. An analysis of the behavior of a class of genetic adaptive systems , 1975 .
[22] H. Müller,et al. Local Polynomial Modeling and Its Applications , 1998 .
[23] J. S. Ivey,et al. Nelder-Mead simplex modifications for simulation optimization , 1996 .
[24] G. Geoffrey Vining,et al. Combining Taguchi and Response Surface Philosophies: A Dual Response Approach , 1990 .
[25] Chunming Zhang. Calibrating the Degrees of Freedom for Automatic Data Smoothing and Effective Curve Checking , 2003 .
[26] William H. Press,et al. Numerical Recipes Example Book , 1989 .
[27] Raymond H. Myers,et al. Response Surface Methodology--Current Status and Future Directions , 1999 .
[28] J. Simonoff. Smoothing Methods in Statistics , 1998 .
[29] John J. Grefenstette,et al. Optimization of Control Parameters for Genetic Algorithms , 1986, IEEE Transactions on Systems, Man, and Cybernetics.
[30] P. Speckman. Kernel smoothing in partial linear models , 1988 .
[31] M. Aitkin. Modelling variance heterogeneity in normal regression using GLIM , 1987 .
[32] Jianqing Fan,et al. Local polynomial kernel regression for generalized linear models and quasi-likelihood functions , 1995 .
[33] G. Box,et al. On the Experimental Attainment of Optimum Conditions , 1951 .
[34] R. H. Myers. Classical and modern regression with applications , 1986 .
[35] D. Kendall,et al. The Statistical Analysis of Variance‐Heterogeneity and the Logarithmic Transformation , 1946 .
[36] J. Grego. Generalized Linear Models and Process Variation , 1993 .
[37] John H. Holland,et al. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .
[38] Margaret H. Wright,et al. Direct search methods: Once scorned, now respectable , 1996 .
[39] W. Cleveland. Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .
[40] J. Borkowski. Using a Genetic Algorithm to Generate Small Exact Response Surface Designs , 2003 .
[41] Christine M. Anderson-Cook,et al. Some Guidelines For Using Nonparametric Methods For Modeling Data From Response Surface Designs , 2005 .
[42] H. Müller,et al. Estimating regression functions and their derivatives by the kernel method , 1984 .
[43] Randy L. Haupt,et al. Practical Genetic Algorithms , 1998 .
[44] Jeffrey B. Birch,et al. Model robust regression: combining parametric, nonparametric, and semiparametric methods , 2001 .
[45] George E. P. Box,et al. Empirical Model‐Building and Response Surfaces , 1988 .
[46] Richard L. Einsporn,et al. An overview of model-robust regression , 2000 .
[47] Connie M. Borror,et al. Model-Robust Optimal Designs: A Genetic Algorithm Approach , 2004 .
[48] E. Nadaraya. On Estimating Regression , 1964 .
[49] Douglas C. Montgomery,et al. Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .
[50] David G. Mayer,et al. Robust parameter settings of evolutionary algorithms for the optimisation of agricultural systems models , 2001 .
[51] I. J. Good,et al. What are Degrees of Freedom , 1973 .
[52] Alejandro Heredia-Langner,et al. A Genetic Algorithm Approach to Multiple-Response Optimization , 2004 .
[53] John A. Nelder,et al. Robust Design via Generalized Linear Models , 2003 .
[54] Michael G. Schimek,et al. Smoothing and Regression: Approaches, Computation, and Application , 2000 .