Semiparametric Techniques for Response Surface Methodology

[1]  G. Vining,et al.  Response Surfaces for the Mean and Variance Using a Nonparametric Approach , 1998 .

[2]  H. Cramér Mathematical methods of statistics , 1947 .

[3]  R. Tibshirani,et al.  Generalized additive models for medical research , 1986, Statistical methods in medical research.

[4]  W. Härdle Nonparametric and Semiparametric Models , 2004 .

[5]  John,et al.  Nonparametric Simple Regression: Smoothing Scatterplots , 2000 .

[6]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[7]  Derek J. Pike,et al.  Empirical Model‐building and Response Surfaces. , 1988 .

[8]  Thomas Bäck,et al.  Evolutionary algorithms in theory and practice - evolution strategies, evolutionary programming, genetic algorithms , 1996 .

[9]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[10]  B. Ripley,et al.  Semiparametric Regression: Preface , 2003 .

[11]  J. Nash Compact Numerical Methods for Computers , 2018 .

[12]  R. H. Myers,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[13]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[14]  William A. Brenneman,et al.  A Dual-Response Approach to Robust Parameter Design for a Generalized Linear Model , 2005 .

[15]  M. Priestley,et al.  Non‐Parametric Function Fitting , 1972 .

[16]  Connie M. Borror,et al.  Genetic Algorithms for the Construction of D-Optimal Designs , 2003 .

[17]  K. Takezawa,et al.  Introduction to Nonparametric Regression , 2005 .

[18]  George E. P. Box,et al.  Dispersion Effects From Fractional Designs , 1986 .

[19]  R. Carroll,et al.  Nonparametric Function Estimation for Clustered Data When the Predictor is Measured without/with Error , 2000 .

[20]  R. Tibshirani,et al.  Generalized Additive Models , 1991 .

[21]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[22]  H. Müller,et al.  Local Polynomial Modeling and Its Applications , 1998 .

[23]  J. S. Ivey,et al.  Nelder-Mead simplex modifications for simulation optimization , 1996 .

[24]  G. Geoffrey Vining,et al.  Combining Taguchi and Response Surface Philosophies: A Dual Response Approach , 1990 .

[25]  Chunming Zhang Calibrating the Degrees of Freedom for Automatic Data Smoothing and Effective Curve Checking , 2003 .

[26]  William H. Press,et al.  Numerical Recipes Example Book , 1989 .

[27]  Raymond H. Myers,et al.  Response Surface Methodology--Current Status and Future Directions , 1999 .

[28]  J. Simonoff Smoothing Methods in Statistics , 1998 .

[29]  John J. Grefenstette,et al.  Optimization of Control Parameters for Genetic Algorithms , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[30]  P. Speckman Kernel smoothing in partial linear models , 1988 .

[31]  M. Aitkin Modelling variance heterogeneity in normal regression using GLIM , 1987 .

[32]  Jianqing Fan,et al.  Local polynomial kernel regression for generalized linear models and quasi-likelihood functions , 1995 .

[33]  G. Box,et al.  On the Experimental Attainment of Optimum Conditions , 1951 .

[34]  R. H. Myers Classical and modern regression with applications , 1986 .

[35]  D. Kendall,et al.  The Statistical Analysis of Variance‐Heterogeneity and the Logarithmic Transformation , 1946 .

[36]  J. Grego Generalized Linear Models and Process Variation , 1993 .

[37]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[38]  Margaret H. Wright,et al.  Direct search methods: Once scorned, now respectable , 1996 .

[39]  W. Cleveland Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .

[40]  J. Borkowski Using a Genetic Algorithm to Generate Small Exact Response Surface Designs , 2003 .

[41]  Christine M. Anderson-Cook,et al.  Some Guidelines For Using Nonparametric Methods For Modeling Data From Response Surface Designs , 2005 .

[42]  H. Müller,et al.  Estimating regression functions and their derivatives by the kernel method , 1984 .

[43]  Randy L. Haupt,et al.  Practical Genetic Algorithms , 1998 .

[44]  Jeffrey B. Birch,et al.  Model robust regression: combining parametric, nonparametric, and semiparametric methods , 2001 .

[45]  George E. P. Box,et al.  Empirical Model‐Building and Response Surfaces , 1988 .

[46]  Richard L. Einsporn,et al.  An overview of model-robust regression , 2000 .

[47]  Connie M. Borror,et al.  Model-Robust Optimal Designs: A Genetic Algorithm Approach , 2004 .

[48]  E. Nadaraya On Estimating Regression , 1964 .

[49]  Douglas C. Montgomery,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[50]  David G. Mayer,et al.  Robust parameter settings of evolutionary algorithms for the optimisation of agricultural systems models , 2001 .

[51]  I. J. Good,et al.  What are Degrees of Freedom , 1973 .

[52]  Alejandro Heredia-Langner,et al.  A Genetic Algorithm Approach to Multiple-Response Optimization , 2004 .

[53]  John A. Nelder,et al.  Robust Design via Generalized Linear Models , 2003 .

[54]  Michael G. Schimek,et al.  Smoothing and Regression: Approaches, Computation, and Application , 2000 .