A mechanosensory receptor required for food texture detection in Drosophila

Textural properties provide information on the ingestibility, digestibility and state of ripeness or decay of sources of nutrition. Compared with our understanding of the chemosensory assessment of food, little is known about the mechanisms of texture detection. Here we show that Drosophila melanogaster can discriminate food texture, avoiding substrates that are either too hard or too soft. Manipulations of food substrate properties and flies' chemosensory inputs indicate that texture preferences are revealed only in the presence of an appetitive stimulus, but are not because of changes in nutrient accessibility, suggesting that animals discriminate the substrates' mechanical characteristics. We show that texture preference requires NOMPC, a TRP-family mechanosensory channel. NOMPC localizes to the sensory dendrites of neurons housed within gustatory sensilla, and is essential for their mechanosensory-evoked responses. Our results identify a sensory pathway for texture detection and reveal the behavioural integration of chemical and physical qualities of food.

[1]  John R. Carlson,et al.  Non-synaptic inhibition between grouped neurons in an olfactory circuit , 2012, Nature.

[2]  R. Steinbrecht,et al.  Gustatory organs of Drosophila melanogaster: fine structure and expression of the putative odorant-binding protein PBPRP2 , 2001, Cell and Tissue Research.

[3]  J. Ngai,et al.  The molecular basis for water taste in Drosophila , 2010, Nature.

[4]  Pavan Ramdya,et al.  Complementary Function and Integrated Wiring of the Evolutionarily Distinct Drosophila Olfactory Subsystems , 2011, The Journal of Neuroscience.

[5]  C. Montell,et al.  The Basis of Food Texture Sensation in Drosophila , 2016, Neuron.

[6]  Kristin Scott,et al.  Contact Chemoreceptors Mediate Male-Male Repulsion and Male-Female Attraction during Drosophila Courtship , 2012, Cell.

[7]  J. Carlson,et al.  Two Gr Genes Underlie Sugar Reception in Drosophila , 2007, Neuron.

[8]  A. Chiang,et al.  Distinct Roles of TRP Channels in Auditory Transduction and Amplification in Drosophila , 2013, Neuron.

[9]  A. Szczesniak Texture is a sensory property , 2002 .

[10]  문석준 A Taste Receptor Required for the Caffeine Response In Vivo , 2006 .

[11]  F. Diao,et al.  A Hard-Wired Glutamatergic Circuit Pools and Relays UV Signals to Mediate Spectral Preference in Drosophila , 2014, Neuron.

[12]  K. Broadie,et al.  Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects , 1995, Neuron.

[13]  Sen-Lin Lai,et al.  Genetic mosaic with dual binary transcriptional systems in Drosophila , 2006, Nature Neuroscience.

[14]  Stefan R. Pulver,et al.  Independent Optical Excitation of Distinct Neural Populations , 2014, Nature Methods.

[15]  S. Meister,et al.  Spatially restricted expression of candidate taste receptors in the Drosophila gustatory system , 2001, Current Biology.

[16]  Wei Zhang,et al.  Drosophila NOMPC is a mechanotransduction channel subunit for gentle-touch sensation , 2012, Nature.

[17]  K. Hashimoto,et al.  Functional dissociation in sweet taste receptor neurons between and within taste organs of Drosophila , 2016, Nature Communications.

[18]  B. K. Mitchell,et al.  Interneurons of the subesophageal ganglion of Sarcophaga bullata responding to gustatory and mechanosensory stimuli , 1992, Journal of Comparative Physiology A.

[19]  R. Stowers,et al.  Expansion of the Gateway MultiSite Recombination Cloning Toolkit , 2013, PloS one.

[20]  A. Dahanukar,et al.  Molecular neurobiology of Drosophila taste , 2015, Current Opinion in Neurobiology.

[21]  Kristin Scott,et al.  Motor Control in a Drosophila Taste Circuit , 2009, Neuron.

[22]  R. Benton,et al.  Electrophysiological recording from Drosophila taste sensilla. , 2011, Cold Spring Harbor protocols.

[23]  T. Markow,et al.  Reproductive ecology of Drosophila , 2008 .

[24]  Y. Jan,et al.  Enhancer-driven membrane markers for analysis of nonautonomous mechanisms reveal neuron–glia interactions in Drosophila , 2011, Proceedings of the National Academy of Sciences.

[25]  D. Floreano,et al.  Mechanosensory Interactions Drive Collective Behaviour in Drosophila , 2014, Nature.

[26]  T. Tanimura,et al.  Drosophila Evaluates and Learns the Nutritional Value of Sugars , 2011, Current Biology.

[27]  Julie H. Simpson,et al.  Genetic Manipulation of Genes and Cells in the Nervous System of the Fruit Fly , 2011, Neuron.

[28]  J. Seo,et al.  Mechanosensory neurons control sweet sensing in Drosophila , 2016, Nature Communications.

[29]  R. Benton,et al.  Visualizing olfactory receptor expression and localization in Drosophila. , 2013, Methods in molecular biology.

[30]  S. Waddell,et al.  Remembering Nutrient Quality of Sugar in Drosophila , 2011, Current Biology.

[31]  C. Zuker,et al.  A Drosophila mechanosensory transduction channel. , 2000, Science.

[32]  F. Marion-Poll,et al.  Dual Mechanism for Bitter Avoidance in Drosophila , 2015, The Journal of Neuroscience.

[33]  L. Looger,et al.  The Role of the TRP Channel NompC in Drosophila Larval and Adult Locomotion , 2010, Neuron.

[34]  F. H. Kirkpatrick,et al.  Overview of agarose gel properties , 1990 .

[35]  Processing of mechanosensory information from gustatory receptors on a hind leg of the locust , 1994, Journal of Comparative Physiology A.

[36]  F. Marion-Poll,et al.  Differentiated Response to Sugars among Labellar Chemosensilla in Drosophila , 2002, Zoological science.

[37]  M. Welsh,et al.  TRPA channels distinguish gravity sensing from hearing in Johnston's organ , 2009, Proceedings of the National Academy of Sciences.

[38]  T. Effertz,et al.  NompC TRP Channel Is Essential for Drosophila Sound Receptor Function , 2011, Current Biology.

[39]  F. Marion-Poll,et al.  Un‐filtered recordings from insect taste sensilla , 1996 .

[40]  H. Wieczorek,et al.  The labellar sugar receptor ofDrosophila , 1989, Journal of Comparative Physiology A.