Input-to-state stability (ISS) analysis for dynamic neural networks

This paper presents the input-to-state (ISS) analysis for dynamic neural networks. We determine, using a Lyapunov function, conditions to guarantee ISS; they also guarantee globally asymptotically stability.

[1]  Manolis A. Christodoulou,et al.  Dynamical Neural Networks that Ensure Exponential Identification Error Convergence , 1997, Neural Networks.

[2]  Eduardo Sontag,et al.  On characterizations of the input-to-state stability property , 1995 .

[3]  E. Kaszkurewicz,et al.  On a class of globally stable neural circuits , 1994 .

[4]  Kiyotoshi Matsuoka,et al.  Stability conditions for nonlinear continuous neural networks with asymmetric connection weights , 1992, Neural Networks.

[5]  M. Forti,et al.  Necessary and sufficient condition for absolute stability of neural networks , 1994 .

[6]  Manolis A. Christodoulou,et al.  Adaptive control of unknown plants using dynamical neural networks , 1994, IEEE Trans. Syst. Man Cybern..

[7]  Eduardo D. Sontag,et al.  On the Input-to-State Stability Property , 1995, Eur. J. Control.

[8]  J. Farrell,et al.  Qualitative analysis of neural networks , 1989 .

[9]  Pravin Varaiya,et al.  Bounded-input bounded-output stability of nonlinear time-varying differential systems. , 1966 .

[10]  Morris W. Hirsch,et al.  Convergent activation dynamics in continuous time networks , 1989, Neural Networks.

[11]  D. Kelly,et al.  Stability in contractive nonlinear neural networks , 1990, IEEE Transactions on Biomedical Engineering.

[12]  J. Tsinias Sontag's “input to state stability condition” and global stabilization using state detection , 1993 .

[13]  Alexander S. Poznyak,et al.  Nonlinear System Approximation by Neural Networks: Error Stability Analysis , 1995, Intell. Autom. Soft Comput..

[14]  Zhong-Ping Jiang,et al.  Small-gain theorem for ISS systems and applications , 1994, Math. Control. Signals Syst..

[15]  M. Krstić,et al.  Inverse optimal design of input-to-state stabilizing nonlinear controllers , 1998, IEEE Trans. Autom. Control..

[16]  Eduardo Sontag Smooth stabilization implies coprime factorization , 1989, IEEE Transactions on Automatic Control.