Mesoscale modeling of mechanics of carbon nanotubes: Self-assembly, self-folding, and fracture

Using concepts of hierarchical multiscale modeling, we report development of a mesoscopic model for single-wall carbon nanotubes with parameters completely derived from full atomistic simulations. The parameters in the mesoscopic model are fit to reproduce elastic, fracture, and adhesion properties of carbon nanotubes, in this article demonstrated for (5,5) carbon nanotubes. The mesoscale model enables modeling of the dynamics of systems with hundreds of ultralong carbon nanotubes over time scales approaching microseconds. We apply our mesoscopic model to study self-assembly processes, including self-folding, bundle formation, as well as the response of bundles of carbon nanotubes to severe mechanical stimulation under compression, bending, and tension. Our results with mesoscale modeling corroborate earlier results, suggesting a novel self-folding mechanism, leading to creation of racket-shaped carbon nanotube structures, provided that the aspect ratio of the carbon nanotube is sufficiently large. We find that the persistence length of the (5,5) carbon nanotube is on the order of a few micrometers in the temperature regime from 300 to 1000 K.

[1]  Markus J. Buehler,et al.  Atomistic and continuum modeling of mechanical properties of collagen: Elasticity, fracture, and self-assembly , 2006 .

[2]  Jia Lu,et al.  Analysis of localized failure of single-wall carbon nanotubes , 2006 .

[3]  Markus J Buehler,et al.  Multiparadigm modeling of dynamical crack propagation in silicon using a reactive force field. , 2006, Physical review letters.

[4]  Jianhua Wang,et al.  Mechanical properties of single-walled carbon nanotubes based on higher order Cauchy–Born rule , 2006 .

[5]  M. Dresselhaus,et al.  Superplastic carbon nanotubes , 2006, Nature.

[6]  Kun Dai,et al.  DNA nanowire fabrication , 2006 .

[7]  Linda S. Schadler,et al.  Fracture Transitions at a Carbon‐Nanotube/Polymer Interface , 2006 .

[8]  Huajian Gao,et al.  Dynamical fracture instabilities due to local hyperelasticity at crack tips , 2006, Nature.

[9]  F. Ding Theoretical study of the stability of defects in single-walled carbon nanotubes as a function of their distance from the nanotube end , 2005 .

[10]  R. Ruoff,et al.  Modeling of carbon nanotube clamping in tensile tests , 2005 .

[11]  K. Liew,et al.  Multiscale modeling of carbon nanotubes under axial tension and compression , 2005 .

[12]  Wei‐De Zhang,et al.  Carbon nanotubes grow to pillars , 2005, Nanotechnology.

[13]  Hanqing Jiang,et al.  A Finite-Temperature Continuum Theory Based on Interatomic , 2005 .

[14]  K. Kern,et al.  Engineering atomic and molecular nanostructures at surfaces , 2005, Nature.

[15]  G. Wallace,et al.  Carbon nanotube based electronic and electrochemical sensors , 2005 .

[16]  K. R. Atkinson,et al.  Strong, Transparent, Multifunctional, Carbon Nanotube Sheets , 2005, Science.

[17]  K. Hwang,et al.  Multiscale Analysis of Fracture of Carbon Nanotubes Embedded in Composites , 2005 .

[18]  W. Goddard,et al.  Microscopic mechanism of water diffusion in glucose glasses. , 2005, Physical review letters.

[19]  Angela M Belcher,et al.  Programmable assembly of nanoarchitectures using genetically engineered viruses. , 2005, Nano letters.

[20]  B. Bhattacharya,et al.  Effect of randomly occurring Stone–Wales defects on mechanical properties of carbon nanotubes using atomistic simulation , 2005, 1507.07857.

[21]  A. Maiti,et al.  Nanotube–polymer composites: insights from Flory–Huggins theory and mesoscale simulations , 2005 .

[22]  J. Chen,et al.  Oscillations of local density of states in defective carbon nanotubes , 2005 .

[23]  A. V. van Duin,et al.  Development of the ReaxFF reactive force field for describing transition metal catalyzed reactions, with application to the initial stages of the catalytic formation of carbon nanotubes. , 2005, The journal of physical chemistry. A.

[24]  H Jiang,et al.  Intrinsic energy loss mechanisms in a cantilevered carbon nanotube beam oscillator. , 2004, Physical review letters.

[25]  Nicola Pugno,et al.  Quantized fracture mechanics , 2004 .

[26]  Patrick S. Doyle,et al.  On the coarse-graining of polymers into bead-spring chains , 2004 .

[27]  P. McEuen,et al.  A tunable carbon nanotube electromechanical oscillator , 2004, Nature.

[28]  Huajian Gao,et al.  Deformation Mechanisms of Very Long Single-Wall Carbon Nanotubes Subject to Compressive Loading , 2004 .

[29]  Victor Sidorov,et al.  DNA-mediated self-assembly of carbon nanotube-based electronic devices , 2004 .

[30]  Angel Rubio,et al.  On the Breaking of Carbon Nanotubes under Tension , 2004 .

[31]  Huajian Gao,et al.  Hyperelasticity governs dynamic fracture at a critical length scale , 2003, Nature.

[32]  Bingqing Wei,et al.  Miniaturized gas ionization sensors using carbon nanotubes , 2003, Nature.

[33]  R. Baer,et al.  Carbon nanotube closed-ring structures , 2003 .

[34]  Sharon C. Glotzer,et al.  Simulated Assembly of Nanostructured Organic/Inorganic Networks , 2003 .

[35]  Huajian Gao,et al.  Spontaneous insertion of DNA oligonucleotides into carbon nanotubes , 2003 .

[36]  C. Ozdoğan,et al.  Structural stability and energetics of single-walled carbon nanotubes under uniaxial strain , 2003, cond-mat/0303391.

[37]  T. Hertel,et al.  Interaction of C60 with carbon nanotubes and graphite. , 2003, Physical review letters.

[38]  Huajian Gao,et al.  Fracture Nucleation in Single-Wall Carbon Nanotubes Under Tension: A Continuum Analysis Incorporating Interatomic Potentials , 2002 .

[39]  S. Sinnott,et al.  Compression of carbon nanotubes filled with C60, CH4, or Ne: predictions from molecular dynamics simulations. , 2002, Physical review letters.

[40]  S. Shi,et al.  Molecular dynamic simulations on tensile mechanical properties of single-walled carbon nanotubes with and without hydrogen storage , 2002 .

[41]  A. V. Duin,et al.  ReaxFF: A Reactive Force Field for Hydrocarbons , 2001 .

[42]  C. Q. Ru,et al.  Axially compressed buckling of a doublewalled carbon nanotube embedded in an elastic medium , 2001 .

[43]  Yoshinori Ando,et al.  Materials science: The smallest carbon nanotube , 2000, Nature.

[44]  Franz Gähler,et al.  A MOLECULAR DYNAMICS RUN WITH 5 180 116 000 PARTICLES , 2000 .

[45]  Mitani,et al.  Stiffness of single-walled carbon nanotubes under large strain , 2000, Physical review letters.

[46]  Phaedon Avouris,et al.  Deformation of carbon nanotubes by surface van der Waals forces , 1998 .

[47]  Jörg Stadler,et al.  IMD: A Software Package for Molecular Dynamics Studies on Parallel Computers , 1997 .

[48]  Huajian Gao,et al.  A theory of local limiting speed in dynamic fracture , 1996 .

[49]  J. Bernholc,et al.  Nanomechanics of carbon tubes: Instabilities beyond linear response. , 1996, Physical review letters.

[50]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[51]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[52]  P. Ajayan,et al.  Smallest carbon nanotube , 1992, Nature.

[53]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[54]  S. L. Mayo,et al.  DREIDING: A generic force field for molecular simulations , 1990 .

[55]  J. Tersoff,et al.  Empirical interatomic potential for carbon, with application to amorphous carbon. , 1988, Physical review letters.

[56]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[57]  Weber,et al.  Computer simulation of local order in condensed phases of silicon. , 1985, Physical review. B, Condensed matter.

[58]  D. H. Tsai The virial theorem and stress calculation in molecular dynamics , 1979 .

[59]  Huajian Gao,et al.  Self-folding and unfolding of carbon nanotubes , 2006 .

[60]  A. V. Duin,et al.  Multi-paradigm modeling of dynamical crack propagation in silicon using the ReaxFF reactive force field , 2006 .

[61]  Ted Belytschko,et al.  Continuum Mechanics Modeling and Simulation of Carbon Nanotubes , 2005 .

[62]  W. Goddard,et al.  Multi-paradigm multi-scale modeling of dynamical crack propagation in silicon using the ReaxFF reactive force field , 2005 .

[63]  Toshiaki Natsuki,et al.  Stress simulation of carbon nanotubes in tension and compression , 2004 .