Projectile remnants in central peaks of lunar impact craters

Unusual minerals observed in lunar craters were thought to originate from beneath the Moon’s surface. Numerical simulations show that rather than being vaporized, much of the impactor material can survive in the crater, implying that the unusual minerals come from the impactor and may not be indigenous to the Moon.

[1]  L. Hecht,et al.  Geochemical identification of projectiles in impact rocks , 2006 .

[2]  C. Pieters,et al.  Copernicus Crater Central Peak: Lunar Mountain of Unique Composition , 1982, Science.

[3]  G. Cremonese,et al.  A NEW CHRONOLOGY FOR THE MOON AND MERCURY , 2008, 0903.5137.

[4]  F. Kyte A meteorite from the Cretaceous/Tertiary boundary , 1998, Nature.

[5]  J. Sunshine,et al.  Ancient Asteroids Enriched in Refractory Inclusions , 2008, Science.

[6]  T. Spohn,et al.  A seismic model of the lunar mantle and constraints on temperature and mineralogy , 2006 .

[7]  H. Melosh,et al.  Hydrocode modeling of oblique impacts: The fate of the projectile , 2000 .

[8]  Elisabetta Pierazzo,et al.  Amino acid survival in large cometary impacts , 1999 .

[9]  Erick R. Malaret,et al.  Mg-spinel lithology: A new rock type on the lunar farside , 2011 .

[10]  R. Malhotra,et al.  A record of planet migration in the main asteroid belt , 2009, Nature.

[11]  A. Boyce,et al.  Discovery of a 25-cm asteroid clast in the giant Morokweng impact crater, South Africa , 2006, Nature.

[12]  W. Goodfellow,et al.  Use of platinum-group elements for impactor identification: Terrestrial impact craters and Cretaceous-Tertiary boundary , 1993 .

[13]  川上 紳一,et al.  Impact Cratering:A Geologic Process Oxford Monographs on Geology and Geophysics No.11 H.,J.MELOSH , 1989 .

[14]  H Y McSween,et al.  Spectroscopic Characterization of Mineralogy and Its Diversity Across Vesta , 2012, Science.

[15]  V. S. Scott,et al.  The Lunar Orbiter Laser Altimeter Investigation on the Lunar Reconnaissance Orbiter Mission , 2010 .

[16]  J. Chambers A hybrid symplectic integrator that permits close encounters between massive bodies , 1999 .

[17]  H. Melosh,et al.  Understanding oblique impacts from experiments, observations, and modeling. , 2000, Annual review of earth and planetary sciences.

[18]  H. Melosh Impact Cratering: A Geologic Process , 1986 .

[19]  Michael E. Zolensky,et al.  Direct Detection of Projectile Relics from the End of the Lunar Basin–Forming Epoch , 2012, Science.

[20]  Satoru Yamamoto,et al.  Possible mantle origin of olivine around lunar impact basins detected by SELENE , 2010 .

[21]  H. Melosh,et al.  Crater features diagnostic of oblique impacts: The size and position of the central peak , 2001 .

[22]  Richard P. Binzel,et al.  Small Main-Belt Asteroid Spectroscopic Survey in the Near-Infrared , 2002 .

[23]  H. Melosh,et al.  Origin of the Spacewatch Small Earth-Approaching Asteroids , 1996 .

[24]  A. Treiman,et al.  Unique spinel‐rich lithology in lunar meteorite ALHA 81005: Origin and possible connection to M3 observations of the farside highlands , 2011 .

[25]  Carle M. Pieters,et al.  Compositional diversity at Theophilus Crater: Understanding the geological context of Mg‐spinel bearing central peaks , 2011 .