Turbulence-induced millimeter-wave scintillation compared with micrometeorological measurements

Scintillations of intensity and phase difference were measured at millimeter wavelengths in a horizontally homogeneous atmospheric surface layer. Simultaneous micrometeorological and optical propagation measurements characterized the clear-air turbulence. Predicted and measured propagation statistics are in good agreement. It is shown that the phase structure function showed a rolloff at large spacings as was expected because the outer scale of the turbulence and log-intensity and phase difference are Gaussian random variables. The mutual coherence function is exp(-D/2) to great accuracy, where D is the sum of phase and log-amplitude structure functions. Estimating heat and humidity fluxes from intensity variances is shown to be valid. >

[1]  R. S. Lawrence,et al.  Refractive-index and absorption fluctuations in the infrared caused by temperature, humidity, and pressure fluctuations , 1980 .

[2]  B. Hicks,et al.  Flux‐gradient relationships in the constant flux layer , 1970 .

[3]  R. S. Cole,et al.  The effect of the outer scale of turbulence and wavelength on scintillation fading at millimeter wavelengths , 1978 .

[4]  R. S. Lawrence,et al.  Refractive index of water vapor in infrared windows , 1986, Annual Meeting Optical Society of America.

[5]  R J Hill Comparison of scintillation methods for measuring the inner scale of turbulence. , 1988, Applied optics.

[6]  S. Clifford,et al.  Mutual coherence function for line‐of‐sight microwave propagation through atmospheric turbulence , 1985 .

[7]  R. Cole,et al.  Wavelength dependence of scintillation fading at 110 and 36 GHz , 1977 .

[8]  Estimates of surface heat flux from sodar and laser scintillation measurements in the unstable boundary layer , 1980 .

[9]  G R Ochs,et al.  Optical-scintillation method of measuring turbulence inner scale. , 1985, Applied optics.

[10]  Determination of the atmospheric refractive index structure parameter from refractivity measurements and amplitude scintillation measurements at 36 GHz. , 1978 .

[11]  E. L. Andreas Atmospheric stability from scintillation measurements. , 1988, Applied optics.

[12]  E. L. Andreas On the Kolmogorov Constants for the Temperature-Humidity Cospectrum and the Refractive Index Spectrum , 1987 .

[13]  R. A. Bohlander,et al.  Millimeter Wave Atmospheric Turbulence Measurements: Preliminary Results And Instrumentation For Future Measurements , 1983 .

[14]  M. Herben Amplitude and phase scintillation measurements on 8.2 km line-of-sight path at 30 GHz , 1982 .

[15]  W. Kohsiek,et al.  Measuring CT2, CQ2, and CTQ in the unstable surface layer, and relations to the vertical fluxes of heat and moisture , 1982 .

[16]  Reginald J. Hill,et al.  Implications of Monin–Obukhov Similarity Theory for Scalar Quantities , 1989 .

[17]  G. R. Ochs,et al.  A saturation-resistant optical scintillometer to measure Cn2† , 1978 .

[18]  W. Kohsiek Inertial subrange correlation between temperature and humidity fluctuations in the unstable surface layer above vegetated terrains , 1984 .

[19]  J. Wyngaard,et al.  The Budgets of Turbulent Kinetic Energy and Temperature Variance in the Atmospheric Surface Layer , 1971 .

[20]  M. Wesely A Comparison of Two Optical Methods for Measuring Line Averages of Thermal Exchanges Above Warm Water Surfaces , 1976 .

[21]  J. Wyngaard,et al.  Estimating Momentum, Heat and Moisture Fluxes from Structure Parameters , 1978 .

[22]  M. Tur,et al.  Optical bichromatic correlation method for the remote sensing of the inner scale , 1987 .

[23]  J. Strohbehn,et al.  The theory of microwave line-of-sight propagation through a turbulent atmosphere , 1970 .

[24]  Stuart A. Collins,et al.  Behavior of the Refractive-Index-Structure Parameter near the Ground* , 1971 .

[25]  The effect of wind velocity on the amplitude scintillations of millimetre radio waves , 1978 .

[26]  R. W. McMillan,et al.  Atmospheric Turbulence Measurement System , 1985, Other Conferences.

[27]  R. Ott Temporal radio frequency spectra of multifrequency waves in a turbulent atmosphere characterized by a complex refractive index , 1977 .

[28]  R. Cole,et al.  Temporal spectra of atmospheric amplitude scintillations at 110 GHz and 36 GHz , 1978 .

[29]  F. Filho,et al.  Amplitude coherence in an absorption region , 1982 .

[30]  Probability distribution of amplitude scintillations on a line-of-sight link at 36 GHz and 55 GHz , 1981 .

[31]  Theory of measuring the path-averaged inner scale of turbulence by spatial filtering of optical scintillation. , 1982, Applied optics.

[32]  Robert M. Manning Theoretical Investigation Of Millimeter Wave Propagation Through A Clear Atmosphere-II , 1983, Other Conferences.

[33]  M. Herben,et al.  A comparison of radio wave and in situ observations of tropospheric turbulence and wind velocity , 1984 .

[34]  A. D. Sarma,et al.  Measurement of atmospheric millimetre-wave phase scintillations in an absorption region , 1985 .

[35]  J. Wieringa,et al.  A revaluation of the Kansas mast influence on measurements of stress and cup anemometer overspeeding , 1980 .

[36]  E. F. Bradley,et al.  Flux-Profile Relationships in the Atmospheric Surface Layer , 1971 .

[37]  R. Hill,et al.  Measuring High-Frequency Humidity, Temperature and Radio Refractive Index in the Surface Layer , 1985 .

[38]  R. Ott,et al.  Atmospheric amplitude spectra in an absorption region , 1976 .

[39]  R. S. Cole,et al.  Spectral density of millimeter wave amplitude scintillations in an absorption region , 1983 .

[40]  M. Wesely,et al.  Atmospheric turbulence parameters from visual resolution. , 1975, Applied optics.