A posteriori error control for finite element approximations of elliptic eigenvalue problems
暂无分享,去创建一个
[1] Mats G. Larson,et al. A Posteriori and a Priori Error Analysis for Finite Element Approximations of Self-Adjoint Elliptic Eigenvalue Problems , 2000, SIAM J. Numer. Anal..
[2] J. Osborn. Spectral approximation for compact operators , 1975 .
[3] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[4] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[5] Rolf Rannacher,et al. A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .
[6] Claes Johnson,et al. Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.
[7] J. Bramble,et al. Rate of convergence estimates for nonselfadjoint eigenvalue approximations , 1973 .
[8] M. Chipot. Finite Element Methods for Elliptic Problems , 2000 .
[9] Tosio Kato. Perturbation theory for linear operators , 1966 .
[10] Ivo Babuška,et al. A Posteriori Error Estimates of Finite Element Solutions of Parametrized Nonlinear Equations , 1992 .
[11] Rolf Rannacher,et al. An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.
[12] I. Babuska,et al. A‐posteriori error estimates for the finite element method , 1978 .