Analysis of hindbrain patterning defects caused by the kreislerenu mutation reveals multiple roles of Kreisler in hindbrain segmentation

The embryonic hindbrain is subdivided into eight subunits, termed rhombomeres (r1–r8). The Kreisler (Krml1/MafB/val) transcription factor is expressed in and essential for patterning rhombomeres 5 and 6. Here, we have shown that in the chemically induced kreislerenu (krenu) allele, a point mutation in the DNA binding domain abolishes or severely reduces Kreisler‐dependent transcription. Comparison of krenu/krenu embryos with those homozygous for the classic kreisler (kr) mutation has reconciled past discrepancies and revealed multiple roles of Kreisler in hindbrain segmentation. These analyses demonstrate that Kreisler is required for maintenance and expansion but not initiation of the Krox20 expressing r5 domain. The differences in the “r5‐like” phenotype of krenu/krenu and kr/kr mouse embryos, and zebrafish carrying mutations in the Kreisler orthologue valentino (val) suggest that Kreisler performs many of its r5‐specific functions by associating with other proteins. By contrast, kr/kr and krenu/krenu mouse and val‐/‐ zebrafish embryos all exhibit indistinguishable defects in r6 specification. Thus, transcriptionally active Kreisler is required for r6 specification. Unlike mouse krenu/krenu and zebrafish val‐/‐ embryos, kr/kr embryos exhibited anterior defects. We determined that the kr chromosomal inversion caused ectopic Kreisler expression in r3 of kr/kr and kr/+ embryos. Hence, Kreisler regulates maintenance and expansion of r5 and specification of r6 but is not required for r3 development. Developmental Dynamics 227:134–142, 2003. © 2003 Wiley‐Liss, Inc.

[1]  R. Krumlauf,et al.  The kreisler mouse: a hindbrain segmentation mutant that lacks two rhombomeres. , 1994, Development.

[2]  S. Schneider-Maunoury,et al.  Disruption of Krox-20 results in alteration of rhombomeres 3 and 5 in the developing hindbrain , 1993, Cell.

[3]  R. Krumlauf,et al.  The role of kreisler in segmentation during hindbrain development. , 1999, Developmental biology.

[4]  M. Deol THE ABNORMALITIES OF THE INNER EAR IN KREISLER MICE. , 1964, Journal of embryology and experimental morphology.

[5]  R. Krumlauf,et al.  Conserved and distinct roles of kreisler in regulation of the paralogous Hoxa3 and Hoxb3 genes. , 1999, Development.

[6]  P. Mitchell,et al.  Transactivation by the hepatitis B virus X protein depends on AP-2 and other transcription factors , 1990, Nature.

[7]  J. Milbrandt,et al.  NAB2, a corepressor of NGFI-A (Egr-1) and Krox20, is induced by proliferative and differentiative stimuli , 1996, Molecular and cellular biology.

[8]  J. Rossant,et al.  Exogenous retinoic acid rapidly induces anterior ectopic expression of murine Hox-2 genes in vivo. , 1992, Development.

[9]  G. Barsh,et al.  The mouse Kreisler (Krml1/MafB) segmentation gene is required for differentiation of glomerular visceral epithelial cells. , 2002, Developmental biology.

[10]  Andrew Lumsden,et al.  Patterning the Vertebrate Neuraxis , 1996, Science.

[11]  P. Hertwig Neue Mutationen und Koppelungsgruppen bei der Hausmaus , 1942, Zeitschrift für Induktive Abstammungs- und Vererbungslehre.

[12]  R. Krumlauf,et al.  Krox20 and kreisler co‐operate in the transcriptional control of segmental expression of Hoxb3 in the developing hindbrain , 2002, The EMBO journal.

[13]  S. Fraser,et al.  Segmentation in the chick embryo hindbrain is defined by cell lineage restrictions , 1990, Nature.

[14]  G. Barsh,et al.  Altered rhombomere-specific gene expression and hyoid bone differentiation in the mouse segmentation mutant, kreisler (kr). , 1993, Development.

[15]  G. Barsh,et al.  The mouse segmentation gene kr encodes a novel basic domain-leucine zipper transcription factor , 1994, Cell.

[16]  R. Krumlauf,et al.  Segmental regulation of Hoxb-3 by kreisler , 1997, Nature.

[17]  P. Swiatek,et al.  Perinatal lethality and defects in hindbrain development in mice homozygous for a targeted mutation of the zinc finger gene Krox20. , 1993, Genes & development.

[18]  G. Barsh,et al.  Equivalence in the genetic control of hindbrain segmentation in fish and mouse. , 1998, Development.

[19]  B. Black,et al.  Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins , 1995, Cell.

[20]  P. Gilardi-Hebenstreit,et al.  Krox-20 patterns the hindbrain through both cell-autonomous and non cell-autonomous mechanisms. , 2001, Genes & development.

[21]  A. Force,et al.  valentino: a zebrafish gene required for normal hindbrain segmentation. , 1996, Development.