Laurentia crustal motion observed using TOPEX/POSEIDON radar altimetry over land

Abstract A new method to estimate the vertical crustal motion from satellite altimetry over land was developed. The method was tested around Hudson Bay, where the observed vertical motion is largely caused by the incomplete glacial isostatic adjustment (GIA) as a result of the Laurentide ice sheet deglaciation since the last glacial maximum (LGM). Decadal (1992–2003) TOPEX/POSEIDON radar altimetry data over land surfaces were used. The results presented here are improved compared to a previous study (Lee, H., Shum, C.K., Kuo, C.Y., Yi, Y., Braun, A., 2008. Application of TOPEX altimetry for solid Earth deformation studies. Terr. Atmos. Ocean. Sci. 19, 37–46. doi:10.3319/TAO.2008.19.1-2.37(SA).) which estimated vertical motion only over relatively flat land surfaces (standard deviation of the height variation β  = 0.4) whereas the combination of land altimetry solution with other measurements match best with the models RF3S20 ( β  = 0.0) or RF3S20 ( β  = 0.2) in terms of mean and standard deviation of the differences. It is anticipated that this innovative technique could potentially be used to provide additional constraints for GIA model improvement, and be applied to other geodynamics studies.

[1]  G. Brown The average impulse response of a rough surface and its applications , 1977 .

[2]  Michael G. Sideris,et al.  Use of GRACE determined secular gravity rates for glacial isostatic adjustment studies in North-America , 2008 .

[3]  David T. Sandwell,et al.  Global mesoscale variability from the Geosat Exact Repeat Mission - Correlation with ocean depth , 1989 .

[4]  C. K. Shum,et al.  Coastal Altimetry and Applications , 1999 .

[5]  H. J. Zwally,et al.  Slope‐induced errors in radar altimetry over continental ice sheets , 1983 .

[6]  Duncan J. Wingham,et al.  A method of combining ICESat and GRACE satellite data to constrain Antarctic mass balance , 2000 .

[7]  Jinyun Guo,et al.  Coastal Gravity Anomalies from Retracked Geosat/GM Altimetry: Improvement, Limitation and the Role of Airborne Gravity Data , 2006 .

[8]  R. Scharroo,et al.  Antarctic elevation change from 1992 to 1996 , 1998, Science.

[9]  Jeffrey P. Walker,et al.  THE GLOBAL LAND DATA ASSIMILATION SYSTEM , 2004 .

[10]  S. Pagiatakis,et al.  Historical relative gravity observations and the time rate of change of gravity due to postglacial rebound and other tectonic movements in Canada , 2003 .

[11]  P. Berry,et al.  Global inland water monitoring from multi‐mission altimetry , 2005 .

[12]  Michael R. Craymer,et al.  Observation of glacial isostatic adjustment in “stable” North America with GPS , 2007 .

[13]  J. Nocquet,et al.  Deformation of the North American plate interior from a decade of continuous GPS measurements , 2006 .

[14]  David W. Hancock,et al.  The corrections for significant wave height and attitude effects in the TOPEX radar altimeter , 1994 .

[15]  H. Jay Zwally,et al.  Analysis and retracking of continental ice sheet radar altimeter waveforms , 1983 .

[16]  C. Shum,et al.  Vertical crustal motion determined by satellite altimetry and tide gauge data in Fennoscandia , 2004 .

[17]  Jonathan L. Bamber,et al.  Ice sheet altimeter processing scheme , 1994 .

[18]  M. Tamisiea,et al.  GRACE Gravity Data Constrain Ancient Ice Geometries and Continental Dynamics over Laurentia , 2007, Science.

[19]  Curt H. Davis,et al.  A robust threshold retracking algorithm for measuring ice-sheet surface elevation change from satellite radar altimeters , 1997, IEEE Trans. Geosci. Remote. Sens..

[20]  C. Shum,et al.  Application of TOPEX altimetry for solid earth deformation studies , 2008 .

[21]  Chung-Yen Kuo,et al.  Vertical Motion Determined Using Satellite Altimetry and Tide Gauges , 2008 .

[22]  C. Shum,et al.  Non-isotropic filtering of GRACE temporal gravity for geophysical signal enhancement , 2005 .

[23]  W. Wal,et al.  Using postglacial sea level, crustal velocities and gravity-rate-of-change to constrain the influence of thermal effects on mantle lateral heterogeneities , 2008 .

[24]  W. Peltier Global glacial isostatic adjustment: palaeogeodetic and space‐geodetic tests of the ICE‐4G (VM2) model , 2002 .

[25]  Jan M. Johansson,et al.  An improved and extended GPS-derived 3D velocity field of the glacial isostatic adjustment (GIA) in Fennoscandia , 2007 .

[26]  A. Cazenave,et al.  Preliminary results of ENVISAT RA-2-derived water levels validation over the Amazon basin , 2006 .

[27]  C. Shum,et al.  Glacial isostatic adjustment at the Laurentide ice sheet margin: Models and observations in the Great Lakes region , 2008 .

[28]  Georgia Fotopoulos,et al.  Assessment of SRTM, ICESat, and Survey Control Monument Elevations in Canada , 2007 .

[29]  Xiaoli Deng,et al.  A coastal retracking system for satellite radar altimeter waveforms: Application to ERS‐2 around Australia , 2006 .

[30]  Alexander Braun,et al.  Verification of the Vertical Error in C-Band SRTM DEM Using ICESat and Landsat-7, Otter Tail County, MN , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[31]  J. Freymueller,et al.  Tide gauge records of uplift along the northern Pacific-North American plate boundary, 1937 to 2001 , 2003 .

[32]  Marcos Heil Costa,et al.  Surface water dynamics in the Amazon Basin: Application of satellite radar altimetry , 2001 .

[33]  Frederique Remy,et al.  On the Azimuthally Anisotropy Effects of Polarization for Altimetric Measurements , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[34]  J. Johansson,et al.  Space-Geodetic Constraints on Glacial Isostatic Adjustment in Fennoscandia , 2001, Science.

[35]  Edward Hanna,et al.  Snowfall-Driven Growth in East Antarctic Ice Sheet Mitigates Recent Sea-Level Rise , 2005, Science.

[36]  W. Peltier GLOBAL GLACIAL ISOSTASY AND THE SURFACE OF THE ICE-AGE EARTH: The ICE-5G (VM2) Model and GRACE , 2004 .

[37]  J. Mäkinen,et al.  Determination of post-glacial land uplift from the three precise levellings in Finland , 1998 .

[38]  J. Garlick,et al.  Near-global validation of the SRTM DEM using satellite radar altimetry , 2007 .

[39]  J. Johansson,et al.  Continuous GPS measurements of postglacial adjustment in Fennoscandia 1. Geodetic results , 2002 .

[40]  R. Nerem,et al.  Estimates of vertical crustal motion derived from differences of TOPEX/POSEIDON and tide gauge sea level measurements , 2002 .

[41]  J. Wahr,et al.  Measurements of Time-Variable Gravity Show Mass Loss in Antarctica , 2006, Science.

[42]  J G Marsh,et al.  Growth of Greenland Ice Sheet: Measurement , 1989, Science.

[43]  M. Watkins,et al.  The gravity recovery and climate experiment: Mission overview and early results , 2004 .

[44]  A. Roth,et al.  The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar , 2003 .

[45]  Will Featherstone,et al.  Comparison of digital elevation models over Australia and external validation using ERS‐1 satellite radar altimetry , 2003 .