A large set of Finnish affected sibling pair families with type 2 diabetes suggests susceptibility loci on chromosomes 6, 11, and 14.
暂无分享,去创建一个
Chun Li | Kaisa Silander | Soumitra Ghosh | Michael P Epstein | Michael Boehnke | William Hagopian | Konstantinos N Lazaridis | Elizabeth R Hauser | Francis S Collins | Jaakko Tuomilehto | Tasha E Fingerlin | Julie A Douglas | Karen L Mohlke | Laura J Scott | Richard M Watanabe | Richard N Bergman | Kimberly F Doheny | Elizabeth W Pugh | F. Collins | M. Boehnke | R. Bergman | J. Douglas | M. Epstein | W. Hagopian | E. Hauser | K. Doheny | L. Scott | K. Mohlke | W. Duren | M. Erdos | H. Stringham | P. Chines | A. Jackson | N. Narisu | P. P. White | T. Buchanan | R. Watanabe | T. Valle | E. Pugh | J. Tuomilehto | K. Silander | Chun Xing Li | T. Fingerlin | Soumitra Ghosh | Narisu Narisu | K. Lazaridis | Anne U Jackson | Thomas A Buchanan | Michael R Erdos | Heather M Stringham | Timo T Valle | J. Hill | R. Porter | V. Magnuson | A. Unni | L. Segal | Peter Chines | Kerry R Wiles | K. Wiles | William L Duren | Peggy P White | Victoria L Magnuson | Kimberly Colby | Jason E Hill | Pablo Hollstein | Kathleen M Humphreys | Roshni A Kasad | Jessica Lambert | George Lin | Anabelle Morales-Mena | Kristin Patzkowski | Carrie Pfahl | Rachel Porter | David Rha | Leonid Segal | Yong D Suh | Jason Tovar | Arun Unni | Christian Welch | Yong D. Suh | Pablo E. Hollstein | Jason Tovar | A. Morales-Mena | C. Pfahl | George Lin | J. Lambert | R. A. Kasad | Kimberly Colby | Kristin Patzkowski | D. Rha | Christian Welch | R. Watanabe | Narisu Narisu | Anabelle Morales-Mena | C. Pfahl | Christian Welch | A. Jackson | Rachel Porter
[1] Y. Chagnon,et al. A genome-wide scan for abdominal fat assessed by computed tomography in the Québec Family Study. , 2001, Diabetes.
[2] M. Boehnke,et al. Genetic linkage analysis of complex genetic traits by using affected sibling pairs. , 1998, Biometrics.
[3] P. Reynier,et al. Cloning and initial characterization of human and mouse Spot 14 genes 1 , 1997, FEBS letters.
[4] L. Peltonen,et al. Genome-wide scan of obesity in Finnish sibpairs reveals linkage to chromosome Xq24. , 2000, The Journal of clinical endocrinology and metabolism.
[5] R Foxon,et al. A genomewide scan for loci predisposing to type 2 diabetes in a U.K. population (the Diabetes UK Warren 2 Repository): analysis of 573 pedigrees provides independent replication of a susceptibility locus on chromosome 1q. , 2001, American journal of human genetics.
[6] M P Epstein,et al. Improved inference of relationship for pairs of individuals. , 2000, American journal of human genetics.
[7] E McEwen,et al. Translational control is required for the unfolded protein response and in vivo glucose homeostasis. , 2001, Molecular cell.
[8] H M Stringham,et al. The Finland-United States investigation of non-insulin-dependent diabetes mellitus genetics (FUSION) study. II. An autosomal genome scan for diabetes-related quantitative-trait loci. , 2000, American journal of human genetics.
[9] M. Luo,et al. A genome-wide search for Type II diabetes susceptibility genes in Chinese Hans , 2001, Diabetologia.
[10] M. Stern. The search for type 2 diabetes susceptibility genes using whole‐genome scans: an epidemiologist's perspective , 2002, Diabetes/metabolism research and reviews.
[11] J. Weber,et al. Genomewide search for type 2 diabetes susceptibility genes in four American populations. , 2000, American journal of human genetics.
[12] J. Michaud,et al. Sim1 haploinsufficiency causes hyperphagia, obesity and reduction of the paraventricular nucleus of the hypothalamus. , 2001, Human molecular genetics.
[13] Marybeth I. Maloney,et al. “Spot 14” Protein Functions at the Pretranslational Level in the Regulation of Hepatic Metabolism by Thyroid Hormone and Glucose* , 1997, The Journal of Biological Chemistry.
[14] L Kruglyak,et al. Parametric and nonparametric linkage analysis: a unified multipoint approach. , 1996, American journal of human genetics.
[15] Aravinda Chakravarti,et al. Automated construction of genetic linkage maps using an expert system (MultiMap): a human genome linkage map , 1994, Nature Genetics.
[16] S. Rich,et al. Linkage of Genetic Markers on Human Chromosomes 20 and 12 to NIDDM in Caucasian Sib Pairs With a History of Diabetic Nephropathy , 1997, Diabetes.
[17] J C Murray,et al. Pediatrics and , 1998 .
[18] Joseph B. Rayman,et al. The Finland-United States investigation of non-insulin-dependent diabetes mellitus genetics (FUSION) study. I. An autosomal genome scan for genes that predispose to type 2 diabetes. , 2000, American journal of human genetics.
[19] E. Lander,et al. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results , 1995, Nature Genetics.
[20] C. Bogardus,et al. A calpain-10 gene polymorphism is associated with reduced muscle mRNA levels and insulin resistance. , 2000, The Journal of clinical investigation.
[21] B. Zinman,et al. Absence of association of type 2 diabetes with CAPN10 and PC-1 polymorphisms in Oji-Cree. , 2001, Diabetes care.
[22] P. O'Connell,et al. A major locus for fasting insulin concentrations and insulin resistance on chromosome 6q with strong pleiotropic effects on obesity-related phenotypes in nondiabetic Mexican Americans. , 2001, American journal of human genetics.
[23] J R O'Connell,et al. PedCheck: a program for identification of genotype incompatibilities in linkage analysis. , 1998, American journal of human genetics.
[24] Carl D Langefeld,et al. Ordered subset analysis in genetic linkage mapping of complex traits , 2004, Genetic epidemiology.
[25] Joseph B. Rayman,et al. Methods for precise sizing, automated binning of alleles, and reduction of error rates in large-scale genotyping using fluorescently labeled dinucleotide markers. FUSION (Finland-U.S. Investigation of NIDDM Genetics) Study Group. , 1997, Genome research.
[26] S. Zeger,et al. Longitudinal data analysis using generalized linear models , 1986 .
[27] F. Collins,et al. Type 2 diabetes: evidence for linkage on chromosome 20 in 716 Finnish affected sib pairs. , 1999, Proceedings of the National Academy of Sciences of the United States of America.
[28] H. Tsai,et al. Type 2 diabetes and three calpain-10 gene polymorphisms in Samoans: no evidence of association. , 2001, American journal of human genetics.
[29] H. Ogura,et al. Mice lacking bombesin receptor subtype-3 develop metabolic defects and obesity , 1997, Nature.
[30] S. Rich. Genetic Epidemiological Perspective , 2006 .
[31] G Scarlato,et al. A polymorphism (K121Q) of the human glycoprotein PC-1 gene coding region is strongly associated with insulin resistance. , 1999, Diabetes.
[32] C. Mariash,et al. Direct Evidence for a Role of the "Spot 14" Protein in the Regulation of Lipid Synthesis (*) , 1995, The Journal of Biological Chemistry.
[33] A. Whittemore,et al. A class of tests for linkage using affected pedigree members. , 1994, Biometrics.
[34] J. Beckmann,et al. A susceptibility locus for early-onset non-insulin dependent (type 2) diabetes mellitus maps to chromosome 20q, proximal to the phosphoenolpyruvate carboxykinase gene. , 1997, Human molecular genetics.
[35] T. Matise,et al. Erratum: Automated construction of genetic linkage maps using an expert system (MultiMap): A human genome linkage map (Nature Genetics (1994) 6 (384- 390)) , 1994 .
[36] Veikko Salomaa,et al. Prevalence of diabetes mellitus and impaired glucose tolerance in the middle-aged population of three areas in Finland. , 1991, International journal of epidemiology.
[37] K Lange,et al. A multipoint method for detecting genotyping errors and mutations in sibling-pair linkage data. , 2000, American journal of human genetics.
[38] S. Lewitzky,et al. A genome scan for type 2 diabetes susceptibility loci in a genetically isolated population. , 2001, Diabetes.
[39] R N Bergman,et al. Mapping Genes for NIDDM: Design of the Finland—United States Investigation of NIDDM Genetics (FUSION) Study , 1998, Diabetes Care.
[40] J. Stengård,et al. Concordance for Type 1 (insulin-dependent) and Type 2 (non-insulin-dependent) diabetes mellitus in a population-based cohort of twins in Finland , 1992, Diabetologia.
[41] M. Boehnke,et al. Accurate inference of relationships in sib-pair linkage studies. , 1997, American journal of human genetics.
[42] Tom H. Lindner,et al. Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus , 2000, Nature Genetics.
[43] C. Dina,et al. Genome-Wide Search for Type 2 Diabetes in Japanese Affected Sib-Pairs Confirms Susceptibility Genes on 3 q , 15 q , and 20 q and Identifies Two New Candidate Loci on 7 p and 11 p , 2002 .
[44] A. Zinn,et al. Profound obesity associated with a balanced translocation that disrupts the SIM1 gene. , 2000, Human molecular genetics.
[45] N J Cox,et al. Allele-sharing models: LOD scores and accurate linkage tests. , 1997, American journal of human genetics.
[46] Kaisa Silander,et al. Variation in three single nucleotide polymorphisms in the calpain-10 gene not associated with type 2 diabetes in a large Finnish cohort. , 2002, Diabetes.
[47] M. McCarthy,et al. Studies of association between the gene for calpain-10 and type 2 diabetes mellitus in the United Kingdom. , 2001, American journal of human genetics.
[48] C. Dina,et al. Genome-wide search for type 2 diabetes in Japanese affected sib-pairs confirms susceptibility genes on 3q, 15q, and 20q and identifies two new candidate Loci on 7p and 11p. , 2002, Diabetes.
[49] S. Rich,et al. New Susceptibility Locus for NIDDM Is Localized to Human Chromosome 20q , 1997, Diabetes.
[50] S. Rich. Mapping Genes in Diabetes: Genetic Epidemiological Perspective , 1990, Diabetes.