TGF-β Inhibition Rescues Hematopoietic Stem Cell Defects and Bone Marrow Failure in Fanconi Anemia.

[1]  J. Greenberger TGF-B Inhibition Rescues Hematopoietic Defects in Fanconi Anemia , 2018, Blood.

[2]  S. Karlsson,et al.  TGF-β signaling in the control of hematopoietic stem cells. , 2015, Blood.

[3]  David A. Williams,et al.  Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem cells , 2015, Nature.

[4]  Martin Kircher,et al.  Biallelic mutations in BRCA1 cause a new Fanconi anemia subtype. , 2015, Cancer discovery.

[5]  Mary Helen Barcellos-Hoff,et al.  New tricks for an old fox: Impact of TGFβ on the DNA damage response and genomic stability , 2014, Science Signaling.

[6]  Weiying Zhou,et al.  TGFβ Induces “BRCAness” and Sensitivity to PARP Inhibition in Breast Cancer by Regulating DNA-Repair Genes , 2014, Molecular Cancer Research.

[7]  M. L. Beau,et al.  Replication stress is a potent driver of functional decline in ageing haematopoietic stem cells , 2014, Nature.

[8]  I. Weissman,et al.  Quiescent hematopoietic stem cells accumulate DNA damage during aging that is repaired upon entry into cell cycle. , 2014, Cell stem cell.

[9]  Luigi Naldini,et al.  Targeted gene therapy and cell reprogramming in Fanconi anemia , 2014, EMBO molecular medicine.

[10]  B. Dawson,et al.  Excessive TGFβ signaling is a common mechanism in Osteogenesis Imperfecta , 2014, Nature Medicine.

[11]  A. Grinberg,et al.  Transforming growth factor-β superfamily ligand trap ACE-536 corrects anemia by promoting late-stage erythropoiesis , 2014, Nature Medicine.

[12]  A. D’Andrea,et al.  FANCD2 activates transcription of TAp63 and suppresses tumorigenesis. , 2013, Molecular cell.

[13]  G. Barosi,et al.  Characterization of the TGF-β1 signaling abnormalities in the Gata1low mouse model of myelofibrosis. , 2013, Blood.

[14]  S. Rafii,et al.  TGFβ restores hematopoietic homeostasis after myelosuppressive chemotherapy , 2013, The Journal of experimental medicine.

[15]  Molly C. Kottemann,et al.  Fanconi anaemia and the repair of Watson and Crick DNA crosslinks , 2013, Nature.

[16]  K. J. Patel,et al.  Genotoxic consequences of endogenous aldehydes on mouse haematopoietic stem cell function , 2012, Nature.

[17]  J. Soulier,et al.  Bone marrow failure in Fanconi anemia is triggered by an exacerbated p53/p21 DNA damage response that impairs hematopoietic stem and progenitor cells. , 2012, Cell stem cell.

[18]  Michael R. Green,et al.  The Blk pathway functions as a tumor suppressor in chronic myeloid leukemia stem cells , 2012, Nature Genetics.

[19]  Jeremy M. Stark,et al.  RI-1: a chemical inhibitor of RAD51 that disrupts homologous recombination in human cells , 2012, Nucleic acids research.

[20]  D. Ross,et al.  NAD(P)H:quinone oxidoreductase 1 (NQO1) in the sensitivity and resistance to antitumor quinones. , 2012, Biochemical pharmacology.

[21]  S. Cocklin,et al.  Inhibition of homologous recombination in human cells by targeting RAD51 recombinase. , 2012, Journal of medicinal chemistry.

[22]  Stephen J. Elledge,et al.  A genome-wide homologous recombination screen identifies the RNA-binding protein RBMX as a component of the DNA damage response , 2012, Nature Cell Biology.

[23]  H. Kurumizaka,et al.  Direct Inhibition of TNF-α Promoter Activity by Fanconi Anemia Protein FANCD2 , 2011, PloS one.

[24]  David J. Rawlings,et al.  Tracking genome engineering outcome at individual DNA breakpoints , 2011, Nature Methods.

[25]  K. J. Patel,et al.  Fancd2 counteracts the toxic effects of naturally produced aldehydes in mice , 2011, Nature.

[26]  Stephen C. West,et al.  DNA interstrand crosslink repair and cancer , 2011, Nature Reviews Cancer.

[27]  Derrick J. Rossi,et al.  DNA damage response in adult stem cells: pathways and consequences , 2011, Nature Reviews Molecular Cell Biology.

[28]  M. Bitzer,et al.  Reduced SMAD7 leads to overactivation of TGF-beta signaling in MDS that can be reversed by a specific inhibitor of TGF-beta receptor I kinase. , 2011, Cancer research.

[29]  David J Adams,et al.  Disruption of mouse Slx4, a regulator of structure-specific nucleases, phenocopies Fanconi Anemia , 2011, Nature Genetics.

[30]  M. Grompe,et al.  Fancd2-/- mice have hematopoietic defects that can be partially corrected by resveratrol. , 2010, Blood.

[31]  D. Pellman,et al.  Cytokinesis failure occurs in Fanconi anemia pathway-deficient murine and human bone marrow hematopoietic cells. , 2010, The Journal of clinical investigation.

[32]  M. Warr,et al.  Hematopoietic stem cell quiescence promotes error-prone DNA repair and mutagenesis. , 2010, Cell stem cell.

[33]  E. Domany,et al.  A distinctive DNA damage response in human hematopoietic stem cells reveals an apoptosis-independent role for p53 in self-renewal. , 2010, Cell stem cell.

[34]  Z. Hořejší,et al.  Preventing nonhomologous end joining suppresses DNA repair defects of Fanconi anemia. , 2010, Molecular cell.

[35]  M. Sivasubramaniam,et al.  Ku70 Corrupts DNA Repair in the Absence of the Fanconi Anemia Pathway , 2010, Science.

[36]  J. Kutok,et al.  Hematopoietic Stem Cell Defects in Mice with Deficiency of Fancd2 or Usp1 , 2010, Stem cells.

[37]  B. Alter,et al.  Pathophysiology and management of inherited bone marrow failure syndromes. , 2010, Blood reviews.

[38]  A. D’Andrea,et al.  Mouse models of Fanconi anemia. , 2009, Mutation research.

[39]  P. Andreassen,et al.  Fanconi anemia proteins and endogenous stresses. , 2009, Mutation research.

[40]  F. Rosselli,et al.  The FANC pathway and BLM collaborate during mitosis to prevent micro-nucleation and chromosome abnormalities , 2009, Nature Cell Biology.

[41]  Michael J. Emanuele,et al.  A Genome-wide RNAi Screen Identifies Multiple Synthetic Lethal Interactions with the Ras Oncogene , 2009, Cell.

[42]  I. Hickson,et al.  Replication stress induces sister-chromatid bridging at fragile site loci in mitosis , 2009, Nature Cell Biology.

[43]  L. Niedernhofer DNA repair is crucial for maintaining hematopoietic stem cell function. , 2008, DNA repair.

[44]  David A. Williams,et al.  TNF-α induces leukemic clonal evolution ex vivo in Fanconi anemia group C murine stem cells , 2007 .

[45]  A. Bhandoola,et al.  Deletion of the developmentally essential gene ATR in adult mice leads to age-related phenotypes and stem cell loss. , 2007, Cell stem cell.

[46]  Irving L. Weissman,et al.  Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age , 2007, Nature.

[47]  Keisuke Ito,et al.  Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells , 2006, Nature Medicine.

[48]  C. Heldin,et al.  BRCA2 and Smad3 synergize in regulation of gene transcription , 2002, Oncogene.

[49]  U. Hellman,et al.  Functional proteomics of transforming growth factor‐β1‐stimulated Mv1Lu epithelial cells: Rad51 as a target of TGFβ1‐dependent regulation of DNA repair , 2002, The EMBO journal.

[50]  M. Buchwald,et al.  Multiple inhibitory cytokines induce deregulated progenitor growth and apoptosis in hematopoietic cells from Fac-/- mice. , 1998, Blood.

[51]  R. Gale,et al.  Hematologic Abnormalities in Fanconi Anemia: An International Fanconi Anemia Registry Study , 1994 .

[52]  Akhurst,et al.  Title Targeting the TGFβ signalling pathway in disease , 2012 .

[53]  David A. Williams,et al.  TNF-alpha induces leukemic clonal evolution ex vivo in Fanconi anemia group C murine stem cells. , 2007, The Journal of clinical investigation.

[54]  Serhiy Souchelnytskyi,et al.  TGFbeta1/Smad3 counteracts BRCA1-dependent repair of DNA damage. , 2005, Oncogene.