All-Carbon Molecules: Evidence for the Generation of Cyclo[18]carbon from a Stable Organic Precursor

The unambiguous structural characterization of a single-sized all-carbon molecule requires its chemical synthesis. For cyclo[18]carbon, ab initio calculations predict a relatively stable, cyclic D9h ground state geometry with alternating C-C (1.36 angstroms) and C≡C (1.20 angstroms) bonds. The synthesis and x-ray crystal structure of a direct precursor to C18 are described. The analysis of laser flash heating experiments on this precursor by time-of-flight mass spectroscopy shows a sequence of retro-Diels-Alder reactions leading to C18 as the predominant fragmentation pattern. Structural evidence is provided for the generation of an all-carbon molecule from a well-characterized organic precursor.

[1]  Eine neue Betriebsgefahr , 1914 .

[2]  Kenneth S. Pitzer,et al.  LARGE MOLECULES IN CARBON VAPOR , 1959 .

[3]  Roald Hoffmann,et al.  Extended hückel theory—v : Cumulenes, polyenes, polyacetylenes and cn , 1966 .

[4]  W. Okamura,et al.  1,3,7,9,13,15-Hexadehydro[18]annulene , 1967 .

[5]  A. Douglas Origin of diffuse interstellar lines , 1977, Nature.

[6]  William B. Austin,et al.  Facile synthesis of ethynylated benzoic acid derivatives and aromatic compounds via ethynyltrimethylsilane , 1981 .

[7]  V. Letokhov,et al.  Nonthermal desorption of molecular ions of polyatomic molecules induced by uv laser radiation , 1981 .

[8]  F. Hillenkamp,et al.  Laser-induced cluster-ions from thin foils of metals and semiconductors , 1981 .

[9]  Generalization of the triptycene concept. Use of diaryne equivalents in the synthesis of iptycenes , 1981 .

[10]  Donald M. Cox,et al.  Production and characterization of supersonic carbon cluster beams , 1984 .

[11]  Eamonn F. Healy,et al.  Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model , 1985 .

[12]  R. Freeman,et al.  Negative and positive cluster ions of carbon and silicon , 1985 .

[13]  Robert F. Curl,et al.  Reactivity of large carbon clusters: spheroidal carbon shells and their possible relevance to the formation and morphology of soot , 1986 .

[14]  J. C. Phillips,et al.  Kinetics of cluster formation in the laser vaporization source: Carbon clusters , 1986 .

[15]  U. Boesl,et al.  A general soft ionization method for mass spectrometry: Resonance‐enhanced multi‐photon ionization of biomolecules , 1986 .

[16]  R. Smalley,et al.  UPS of Buckminsterfullerene and other large clusters of carbon , 1987 .

[17]  Krishnan Raghavachari,et al.  Structure, stability, and fragmentation of small carbon clusters , 1987 .

[18]  Ph. Gerhardt,et al.  Polyhedral carbon ions in hydrocarbon flames , 1987 .

[19]  H. W. Kroto,et al.  The stability of the fullerenes Cn, with n = 24, 28, 32, 36, 50, 60 and 70 , 1987, Nature.

[20]  M. Jarrold,et al.  Photodissociation of carbon cluster cations , 1987 .

[21]  Robert F. Curl,et al.  The formation of long carbon chain molecules during laser vaporization of graphite , 1987 .

[22]  M. Schlüter,et al.  Covalent Group IV Atomic Clusters , 1987, Science.

[23]  S. Iijima The 60-carbon cluster has been revealed , 1987 .

[24]  K. C. Reichmann,et al.  Carbon clusters revisited: The ‘‘special’’ behavior of C60 and large carbon clusters , 1988 .

[25]  Robert F. Curl,et al.  Photophysics of buckminsterfullerene and other carbon cluster ions , 1988 .

[26]  R. F. Curl,et al.  Probing C60 , 1988, Science.

[27]  R. Smalley,et al.  UPS of 2–30-atom carbon clusters: Chains and rings , 1988 .

[28]  T. Lowenstein,et al.  Origin of Ancient Potash Evaporites: Clues from the Modem Nonmarine Qaidam Basin of Western China , 1989, Science.

[29]  S. Mcelvany,et al.  Investigations of small carbon cluster-ion structures by reactions with hydrogen cyanide , 1989 .

[30]  C. Wilkins,et al.  First observation of carbon aggregate ions >C600+ by laser desorption Fourier transform mass spectrometry , 1989 .