Time-domain BEM for transient interfacial crack problems in anisotropic piezoelectric bi-materials

A time-domain boundary element method (BEM) together with the sub-domain technique is applied to study transient response of interfacial cracks in piecewise homogeneous, anisotropic and linear piezoelectric bi-materials under electrical and mechanical impacts. The present time-domain BEM uses a quadrature formula for the temporal discretization to approximate the convolution integrals and a collocation method for the spatial discretization. Quadratic quarter-point elements are implemented at the tips of the interface cracks. To determine the real or complex dynamic stress intensity factors and the dynamic electrical displacement intensity factor of the interfacial cracks, an explicit extrapolating formula in a typical state of the crack plane perpendicular to the poling direction is presented in this paper. Numerical examples are presented; and the effects of the load combination and material combination on dynamic intensity factors and dynamic energy release rate are discussed.

[1]  Baolin Wang,et al.  A crack in a piezoelectric layer bonded to a dissimilar elastic layer under transient load , 2001 .

[2]  Ch. Zhang,et al.  A 2D time-domain collocation-Galerkin BEM for dynamic crack analysis in piezoelectric solids , 2010 .

[3]  Xi-Qiao Feng,et al.  Transient response of an insulating crack between dissimilar piezoelectric layers under mechanical and electrical impacts , 2002 .

[4]  S. Meguid,et al.  The Interface Crack Problem of Bonded Piezoelectric and Elastic Half-Space Under Transient Electromechanical Loads , 2002 .

[5]  Zhigang Suo,et al.  Fracture mechanics for piezoelectric ceramics , 1992 .

[6]  S. Ueda Impact response of a piezoelectric layered composite plate with a crack , 2002 .

[7]  Z. Ou Singularity parametersε andκ for interface cracks in transversely isotropic piezoelectric bimaterials , 2003 .

[8]  Ch. Zhang,et al.  3-D and 2-D Dynamic Green's functions and time-domain BIEs for piezoelectric solids , 2005 .

[9]  C. Lubich Convolution quadrature and discretized operational calculus. I , 1988 .

[10]  D. Gross,et al.  BIEM solution of piezoelectric cracked finite solids under time-harmonic loading , 2007 .

[11]  Shanyi Du,et al.  Electroelastic fracture dynamics for multilayered piezoelectric materials under dynamic anti-plane shearing , 2000 .

[12]  Ch. Zhang,et al.  2D transient dynamic crack analysis in piezoelectric solids by BEM , 2007 .

[13]  Horacio Sosa,et al.  Dynamic representation formulas and fundamental solutions for piezoelectricity , 1995 .

[14]  C. Lubich Convolution quadrature and discretized operational calculus. II , 1988 .

[15]  Andrew N. Norris,et al.  Dynamic Green’s functions in anisotropic piezoelectric, thermoelastic and poroelastic solids , 1994, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[16]  Yoshikazu Araki,et al.  Time-harmonic BEM for 2-D piezoelectricity applied to eigenvalue problems , 2004 .

[17]  Andrés Sáez,et al.  Hypersingular BEM for dynamic fracture in 2-D piezoelectric solids , 2006 .

[18]  Shou-wen Yu,et al.  Transient response of a Griffith crack between dissimilar piezoelectric layers under anti-plane mechanical and in-plane electrical impacts , 2002 .

[19]  M. Kuna,et al.  Finite Element Techniques for Dynamic Crack Analysis in Piezoelectrics , 2005 .

[20]  Chuanzeng Zhang,et al.  2-D transient dynamic analysis of cracked piezoelectric solids by a time-domain BEM , 2008 .

[21]  Toshihisa Nishioka,et al.  Dynamic J integral, separated dynamic J integral and component separation method for dynamic interfacial cracks in piezoelectric bimaterials , 2003 .