Probabilistic Admissible Region for Short-Arc Angles-Only Observations

Abstract : The admissible region is defined as the set of physically acceptable orbits (i.e., orbits with negative energies). Given additional constraints on orbital semi-major axis, eccentricity, etc, the admissible region is further constrained, resulting in the constrained admissible region (CAR). Based on known statistics of the measurement process, in this paper we replace hard constraints with a probabilistic representation of the admissible region. This results in the probabilistic admissible region (PAR) that can be used for orbit initiation in Bayesian tracking. While this is a general concept that is applicable to any measurement scenario, we will illustrate the idea using a short-arc, angles-only observation scenario.

[1]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[2]  Anil K. Jain,et al.  Unsupervised Learning of Finite Mixture Models , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  A. Milani,et al.  Orbit determination with very short arcs. I admissible regions , 2004 .

[4]  J. Junkins,et al.  Optimal Estimation of Dynamic Systems , 2004 .

[5]  Andrea Milani,et al.  From Astrometry to Celestial Mechanics: Orbit Determination with Very Short Arcs , 2005 .

[6]  Alessandro Rossi,et al.  Orbit determination of space debris: admissible regions , 2007 .

[7]  Jared M. Maruskin,et al.  Correlation of Optical Observations of Objects in Earth Orbit , 2009 .

[8]  Alessandro Rossi,et al.  Correlation of space debris observations by the virtual debris algorithm , 2009 .

[9]  Linda Dimare,et al.  Orbit determination with the two-body integrals , 2009, 0911.3555.

[10]  Jared M. Maruskin,et al.  Circular and zero-inclination solutions for optical observations of Earth-orbiting objects , 2010 .

[11]  T. Schildknecht,et al.  Orbit determination of space objects based on sparse optical data , 2010 .

[12]  D. Farnocchia,et al.  Innovative methods of correlation and orbit determination for space debris , 2009, 0911.0149.

[13]  Kyle J. DeMars,et al.  Initial Orbit Determination using Short-Arc Angle and Angle Rate Data , 2012, IEEE Transactions on Aerospace and Electronic Systems.

[14]  Daniel J. Scheeres,et al.  Correlation of Optical Observations of Earth-Orbiting Objects and Initial Orbit Determination , 2012 .

[15]  Matthew P. Wilkins,et al.  Parallel Algorithm for Track Initiation for Optical Space Surveillance , 2013 .

[16]  Kyle J. DeMars,et al.  Probabilistic Initial Orbit Determination Using Gaussian Mixture Models , 2013 .

[17]  M. P. Wilkins,et al.  Parallel Track Initiation for Optical Space Surveillance Using Range and Range Rate Bounds , 2013 .

[18]  Oliver Montenbruck,et al.  Best hypotheses search on iso-energy-grid for initial orbit determination and track association , 2013 .

[19]  Hauke Fiedler,et al.  Track Association Performance of the Best Hypotheses Search Method , 2013 .

[20]  Matthew P. Wilkins,et al.  PROBABILISTIC ADMISSIBILITY IN ANGLES-ONLY INITIAL ORBIT DETERMINATION , 2014 .

[21]  Marcus J. Holzinger,et al.  Incorporating Uncertainty in Admissible Regions for Uncorrelated Detections , 2014 .

[22]  Nam-Ho Kim,et al.  Distribution Statement A: Approved for Public Release , 2016 .