Multifunctional phenomena in Tb-Dy-Gd(Ho)-Co(Al) compounds with a Laves phase structure: Magnetostriction and magnetocaloric effect

[1]  M. Yan,et al.  Recent progresses in exploring the rare earth based intermetallic compounds for cryogenic magnetic refrigeration , 2020 .

[2]  B. Nacke,et al.  Magnetocaloric and Structural Studies of Substituted Tb0.2Dy0.8-xGdxCo0.9Al0.1 Laves Phases Alloys , 2019, Key Engineering Materials.

[3]  A. Rudskoy,et al.  Magnetocaloric effect and magnetostrictive deformation in Tb-Dy-Gd-Co-Al with Laves phase structure , 2017, Journal of Magnetism and Magnetic Materials.

[4]  Yongjiang Huang,et al.  Table-like magnetocaloric behavior and enhanced cooling efficiency of a Bi-constituent Gd alloy wire-based composite , 2018, Journal of Alloys and Compounds.

[5]  I. Tereshina,et al.  Persistent values of magnetocaloric effect in the multicomponent Laves phase compounds with varied composition , 2018, Acta Materialia.

[6]  X. Moya,et al.  Multicaloric materials and effects , 2018 .

[7]  K. Nenkov,et al.  Structural, magnetic and magnetocaloric properties of HoNi 2 and ErNi 2 compounds ordered at low temperatures , 2018 .

[8]  L. Xia,et al.  Achieving a table-like magnetic entropy change across the ice point of water with tailorable temperature range in Gd-Co-based amorphous hybrids , 2017 .

[9]  Chao Zhou,et al.  Correlation between magnetostriction and magnetic structure in pseudobinary compounds Tb(Co1-xFex)2 , 2017 .

[10]  K. Nenkov,et al.  Magnetocaloric effect in Laves-phase rare-earth compounds with the second-order magnetic phase transition: Estimation of the high-field properties , 2017 .

[11]  K. Nenkov,et al.  Effect of Tb and Al substitution within the rare earth and cobalt sublattices on magnetothermal properties of Dy0.5Ho0.5Co2 , 2017 .

[12]  A. Pathak,et al.  Anisotropy induced anomalies in Dy1−xTbxAl2 , 2017 .

[13]  L. Schultz,et al.  Magnetostructural phase transitions and magnetocaloric effect in Tb-Dy-Ho-Co-Al alloys with a Laves phase structure , 2016 .

[14]  Yuan Liu,et al.  Fabrication, magnetostriction properties and applications of Tb-Dy-Fe alloys: a review , 2016 .

[15]  J. Wosnitza,et al.  Magnetic anisotropy and magnetic phase transitions in RFe5Al7 , 2015 .

[16]  L. Schultz,et al.  Multifunctional Phenomena in Rare-Earth Intermetallic Compounds With a Laves Phase Structure: Giant Magnetostriction and Magnetocaloric Effect , 2014, IEEE Transactions on Magnetics.

[17]  T. I. Ivanova,et al.  Magnetic, transport and magnetocaloric properties in the Laves phase intermetallic Ho (Co1−xAlx)2 compounds , 2014 .

[18]  X. Ren,et al.  Inverse effect of morphotropic phase boundary on the magnetostriction of ferromagnetic Tb1−xGdxCo2 , 2014 .

[19]  E. Tereshina,et al.  Magnetostriction in (Tb0.45Dy0.55)1−xErxCo2 (x = 0.1, 0.2): high-field investigation , 2011 .

[20]  E. Tereshina,et al.  Magnetocaloric effect in (Tb,Dy,R)(Co,Fe)2 (R = Ho, Er) multicomponent compounds , 2011 .

[21]  E. Tereshina,et al.  Magnetocaloric and magnetoelastic effects in (Tb0.45Dy0.55)1-xErxCo2 multicomponent compounds , 2010 .

[22]  E. Tereshina,et al.  Magnetostriction and magnetization of the intermetallic compounds RFe2 − xCox (R = Tb, Dy, Er) with compensated magnetic anisotropy , 2009 .

[23]  N. Oliveira Magnetocaloric effect in (Tb1-zDyz)Co2 , 2008 .

[24]  R. Rawat,et al.  Ti substituted La0.67Ca0.33MnO3 ortho-perovskites: Dominant role of local structure on the electrical transport and magnetic properties , 2008 .

[25]  K. Skokov,et al.  Increase in the magnetostrictive susceptibility of Tb0.3Dy0.67Ho0.03Fe2−xCox alloys upon substitution of cobalt for iron , 2007 .

[26]  S. Malik,et al.  Itinerant electron metamagnetism and magnetocaloric effect in RCo2-based Laves phase compounds , 2006, cond-mat/0609401.

[27]  J. Vejpravová,et al.  Magnetocaloric phenomena in RE(Co 1- xX x ) 2 compounds , 2005 .

[28]  D. Jiles Recent advances and future directions in magnetic materials , 2003 .

[29]  A. Tishin,et al.  The Magnetocaloric Effect and its Applications , 2003 .

[30]  T. Tang,et al.  The magnetocaloric effect and magnetic phase transitions in Dy(Co1-xAlx)2 compounds , 2002 .

[31]  M. Costa,et al.  Magnetocaloric effect in the intermetallic compounds RCo 2 (R=Dy,Ho,Er) , 2002 .

[32]  A. Markosyan,et al.  Physical properties of RCo2 Laves phases , 2001 .

[33]  S. Khmelevskyi,et al.  The order of the magnetic phase transitions in RCo2 (R = rare earth) intermetallic compounds , 2000 .

[34]  N. Duc,et al.  Itinerant Electron Metamagnetism of Co Sublattice in the Lanthanide—Cobalt Intermetallics , 1999 .

[35]  T. Goto,et al.  Magnetovolume effects in metamagnetic itinerant-electron systems and , 1998 .

[36]  A. Andreev Chapter 2 Thermal expansion anomalies and spontaneous magnetostriction in rare-earth intermetallics with cobalt and iron , 1995 .

[37]  A. Tishin,et al.  Magnetocaloric effect in HoCo2 compound , 1991 .

[38]  A. Clark Chapter 15 Magnetostrictive RFe2 intermetallic compounds , 1979 .

[39]  K. Buschow,et al.  Intermetallic compounds of rare-earth and 3d transition metals , 1977 .

[40]  K. Taylor INTERMETALLIC RARE-EARTH COMPOUNDS. , 1971 .