Computational fluid dynamics applied to membranes: State of the art and opportunities

Membrane filtration has become firmly established as a primary technology for ensuring the purity, safety and/or efficiency of the treatment of water or effluents. In this paper, we review the improvements that have been achieved concerning the membranes used for microfiltration, ultrafiltration, nanofiltration/reverse osmosis processes during the last decades. More especially, we review the state of the art computational fluid dynamics (CFD) methods applied to membranes processes. Many studies have focused on the best ways of using a particular membrane process. But, the design of new membrane systems requires a considerable amount of process development as well as robust methods. Computational fluid dynamics may provide a lot of interesting information for the development of membrane processes. We review the different ways in which CFD methods are used to improve membrane performance.

[1]  Bengt Sundén,et al.  Flow visualization and LDV measurements of laminar flow in a helical square duct with finite pitch , 1995 .

[2]  Robert W. Field,et al.  Simulation of cross-flow filtration for baffled tubular channels and pulsatile flow , 1994 .

[3]  P. Moulin,et al.  Numerical simulation of Dean vortices: fluid trajectories , 2002 .

[4]  Richard J. Wakeman,et al.  A finite volume model for the hydrodynamics of combined free and porous flow in sub-surface regions , 2002 .

[5]  Girija Jayaraman,et al.  Numerical simulation of dispersion in the flow of power law fluids in curved tubes , 1994 .

[6]  Viriato Semiao,et al.  The effect on mass transfer of momentum and concentration boundary layers at the entrance region of a slit with a nanofiltration membrane wall , 2002 .

[7]  Zhanfeng Cui,et al.  Flux enhancements with gas sparging in downwards crossflow ultrafiltration: performance and mechanism , 1996 .

[8]  A. E. Dukler,et al.  Modelling flow pattern transitions for steady upward gas‐liquid flow in vertical tubes , 1980 .

[9]  Kohei Ogawa,et al.  Feasibility study on concentration of slurry and classification of contained particles by microchannel , 2004 .

[10]  Tzvetan Kotzev,et al.  Numerical study of the fluid dynamics and mass transfer of an ultrafiltration performance in a tube membrane module , 1994 .

[11]  Georges Belfort,et al.  Fluid mechanics in membrane filtration: Recent developments☆ , 1989 .

[12]  Sandeep K. Karode,et al.  Flow visualization through spacer filled channels by computational fluid dynamics I. , 2001 .

[13]  Mark R. Wiesner,et al.  Computational fluid dynamics modeling of the flow in a laboratory membrane filtration cell operated at low recoveries , 2003 .

[14]  Ken Darcovich,et al.  Turbulent transport in membrane modules by CFD simulation in two dimensions , 1995 .

[15]  Robert H. Davis,et al.  Modeling of concentration polarization and depolarization with high-frequency backpulsing , 1996 .

[16]  Pierre J. Carreau,et al.  Modeling of ultrafiltration : predictions of concentration polarization effects , 1994 .

[17]  Petr Doleěk,et al.  Mathematical modelling of permeate flow in multichannel ceramic membrane , 1995 .

[18]  Vítor Geraldes,et al.  Flow and mass transfer modelling of nanofiltration , 2001 .

[19]  Zhanfeng Cui,et al.  Hydrodynamic analysis of upward slug flow in tubular membranes , 2002 .

[20]  David F. Fletcher,et al.  Techniques for computational fluid dynamics modelling of flow in membrane channels , 2003 .

[21]  Céline Picard,et al.  Flux enhancement in microfiltration by corkscrew vortices formed in helical flow passages , 2002 .

[22]  A. S. Berman Laminar Flow in Channels with Porous Walls , 1953 .

[23]  Zhanfeng Cui,et al.  Enhancing hollow fibre ultrafiltration using slug-flow — a hydrodynamic study , 2002 .

[24]  Zai-Sha Mao,et al.  The motion of Taylor bubbles in vertical tubes. I: a numerical simulation for the shape and rise velocity of Taylor bubbles in stagnant and flowing liquid , 1990 .

[25]  P Moulin,et al.  Dean vortices: comparison of numerical simulation of shear stress and improvement of mass transfer in membrane processes at low permeation fluxes , 2001 .

[26]  Rishi Sondhi,et al.  Applications and benefits of ceramic membranes , 2003 .

[27]  Eva Sorensen,et al.  Detailed mathematical modelling of membrane modules , 2001 .

[28]  David F. Fletcher,et al.  A computational fluids dynamics study of buoyancy effects in reverse osmosis , 2004 .

[29]  Vahid Nassehi,et al.  Finite element modelling of concentration profiles in flow domains with curved porous boundaries , 2003 .

[30]  Zhanfeng Cui,et al.  Gas sparging to enhance permeate flux in ultrafiltration using hollow fibre membranes , 1996 .

[31]  Richard J. Wakeman,et al.  Additional techniques to improve microfiltration , 2002 .

[32]  Georges Belfort,et al.  Membrane modules: comparison of different configurations using fluid mechanics☆ , 1988 .

[33]  Viriato Semiao,et al.  Hydrodynamics and concentration polarization in NF/RO spiral-wound modules with ladder-type spacers , 2003 .

[34]  Abhijit Chatterjee,et al.  Modeling of a radial flow hollow fiber module and estimation of model parameters using numerical techniques , 2004 .

[35]  Vítor Geraldes,et al.  Numerical and experimental study of mass transfer in lysozyme ultrafiltration , 2002 .

[36]  Georges Belfort,et al.  Fluid mechanics and cross-flow filtration: some thoughts , 1985 .

[37]  David F. Fletcher,et al.  A CFD study of unsteady flow in narrow spacer-filled channels for spiral-wound membrane modules , 2002 .

[38]  Masaaki Sekino,et al.  Study of an analytical model for hollow fiber reverse osmosis module systems , 1995 .

[39]  T Carroll,et al.  The effect of cake and fibre properties on flux declines in hollow-fibre microfiltration membranes , 2001 .

[40]  Markus Bubolz,et al.  The use of dean vortices for crossflow microfiltration: basic principles and further investigation , 2002 .

[41]  J. Gillis,et al.  Viscous Flow in a Pipe With Absorbing Walls , 1967 .

[42]  T. Chandratilleke,et al.  Numerical prediction of secondary flow and convective heat transfer in externally heated curved rectangular ducts , 2003 .

[43]  Lihan Huang,et al.  Finite element analysis as a tool for crossflow membrane filter simulation , 1999 .

[44]  T. Wah Laminar Flow in a Uniformly Porous Channel , 1964 .

[45]  Dianne E. Wiley,et al.  CFD simulations of net-type turbulence promoters in a narrow channel , 2001 .

[46]  Ken Darcovich,et al.  CFD-assisted thin channel membrane characterization module design☆ , 1997 .

[47]  C. Cabassud,et al.  How slug flow can improve ultrafiltration flux in organic hollow fibres , 1997 .

[48]  Joel H. Ferziger,et al.  Computational methods for fluid dynamics , 1996 .

[49]  G Costigan,et al.  The performance of helical screw-thread inserts in tubular membranes , 2001 .

[50]  Christian Bouchard,et al.  Computer simulation of membrane separartion processes , 1989 .

[51]  S. Geissler,et al.  Dynamic model of crossflow microfiltration in flat-channel systems under laminar flow conditions , 1995 .

[52]  Viriato Semiao,et al.  Integrated modeling of transport processes in fluid/nanofiltration membrane systems , 2002 .

[53]  Vítor Geraldes,et al.  Nanofiltration mass transfer at the entrance region of a slit laminar flow , 1998 .

[54]  Mark M. Clark,et al.  Modeling of flux decline during crossflow ultrafiltration of colloidal suspensions , 1998 .

[55]  T. Mizushina,et al.  STUDY OF FLOW IN A POROUS TUBE WITH RADIAL MASS FLUX , 1971 .

[56]  Viriato Semiao,et al.  The effect of the ladder-type spacers configuration in NF spiral-wound modules on the concentration boundary layers disruption☆ , 2002 .

[57]  C. Hirsch Numerical Computation of Internal and External Flows, Volume 2: Computational Methods for Inviscid and Viscous Flows , 1990 .

[58]  Viriato Semiao,et al.  Flow management in nanofiltration spiral wound modules with ladder-type spacers , 2002 .

[59]  Koichi Tsujimoto,et al.  Direct numerical simulation of a turbulent flow in a channel having periodic pressure gradient , 1995 .

[60]  David F. Fletcher,et al.  Computational fluid dynamics modelling of flow and permeation for pressure-driven membrane processes , 2002 .

[61]  Raja Ghosh,et al.  Mass transfer in gas-sparged ultrafiltration: upward slug flow in tubular membranes , 1999 .

[62]  A. B. de Haan,et al.  Optimization of commercial net spacers in spiral wound membrane modules , 2002 .

[63]  Georges Belfort,et al.  Dean vortices with wall flux in a curved channel membrane system , 1993 .

[64]  William A. Edelstein,et al.  Dean vortex stability using magnetic resonance flow imaging and numerical analysis , 2001 .

[65]  S. G. Yiantsios,et al.  Numerical simulation of the flow in a plane-channel containing a periodic array of cylindrical turbulence promoters , 2004 .

[66]  Sandeep K. Karode,et al.  Laminar flow in channels with porous walls, revisited ☆ , 2001 .

[67]  Robert L. Laurence,et al.  Influence of slip velocity at a membrane surface on ultrafiltration performance—I. Channel flow system , 1979 .

[68]  F. Li,et al.  Experimental validation of CFD mass transfer simulations in flat channels with non-woven net spacers , 2004 .

[69]  Eva Sorensen,et al.  A general approach to modelling membrane modules , 2003 .

[70]  Siddharth G. Chatterjee,et al.  Fluid flow in an idealized spiral wound membrane module , 1986 .

[71]  W. T. Hanbury,et al.  Numerical simulation and optimisation of spiral-wound modules , 1992 .

[72]  Petr Doleček,et al.  Permeate flow in hexagonal 19-channel inorganic membrane under filtration and backflush operating modes , 1998 .

[73]  Georges Belfort,et al.  Enhanced performance for pressure-driven membrane processes: the argument for fluid instabilities , 1993 .

[74]  J. Miranda,et al.  Concentration polarization in a membrane placed under an impinging jet confined by a conical wall — a numerical approach , 2001 .

[75]  Leroy S. Fletcher,et al.  Investigation of Laminar Flow in a Porous Pipe with Variable Wall Suction , 1973 .

[76]  Vahid Nassehi,et al.  Modelling of combined Navier–Stokes and Darcy flows in crossflow membrane filtration , 1998 .

[77]  Menachem Elimelech,et al.  In situ monitoring techniques for concentration polarization and fouling phenomena in membrane filtration. , 2003, Advances in colloid and interface science.

[78]  Masaaki Sekino,et al.  Precise analytical model of hollow fiber reverse osmosis modules , 1993 .

[79]  Zhanfeng Cui,et al.  Effect of bubble size and frequency on the permeate flux of gas sparged ultrafiltration with tubular membranes , 1997 .

[80]  Belkacem Zeghmati,et al.  A new Navier-Stokes and Darcy's law combined model for fluid flow in crossflow filtration tubular membranes , 2004 .

[81]  W. R. Dean Fluid Motion in a Curved Channel , 1928 .